130 Battery Street, Suite 400 San Francisco, California 94111 Tel: (415) 981-2811, Fax: (415) 981-0801

December 18, 2008

U.S. Environmental Protection Agency
75 Hawthorne Street
Francisco, CA 94105
TDD No: TO2-09-08-07-0005
Project No: 002693.2009.01RF

Attention: Tom Dunkelman, EPA On-Scene Coordinator

Subject: Anaconda Mine Pond Removal Support

Old Raffinate Pond Report Former Anaconda Copper Mine

Yerington, Lyon County, Nevada 92274

Latitude 38.994° North; Longitude 119.198° West

Introduction

In July 2008, the United States Environmental Protection Agency (U.S. EPA) Federal On-Scene Coordinator (FOSC) Tom Dunkelman issued a Technical Directive Document that tasked the Superfund Technical Assessment and Response Team (START) to support U.S. EPA funded removal activities at the Anaconda Mine site in Yerington, Nevada. The support effort was divided into three principal tasks. The first task was to support the excavation activities at the Old Raffinate Pond area with air monitoring, sampling, field analysis, and laboratory analysis. The second task was to perform quality assurance (QA) oversight and conduct QA testing during the installation of a liner system for a Phase I/II Pond. The final task was to conduct intermittent sampling and analysis of soil in bioremediation cells in order to monitor the progress of the soil remediation effort. This letter report summarizes the START activities and presents analytical data associated with the first task only. Tasks 2 and 3 will be addressed in separate reports.

All figures and tables referenced in this document are located in Attachments 1 and 2, respectively. A photographic record of site activities is located in Attachment 3. The laboratory reports are located in Attachment 4.

Background

The former Anaconda Mine is located at 102 Burch Drive, off Highway 95, approximately two miles west of the town of Yerington, Lyon County, Nevada (Figure 1). The geographic coordinates for the site are 38.994° North latitude and 119.198° West longitude. The mine site is bordered to the north by agricultural land, to the east by Highway 95, to the west and southwest by the Singatse mountain range and the town of Weed Heights, and to the south by United States Bureau of Land Management land. The site comprises an area of more than 3,400 acres and includes an open-pit copper mine with ore processing areas, ore stockpiles, tailing stockpiles, and

Anaconda Mine Trip Report TDD No: TO2-09-08-07-0005 December 15, 2008 Page 2

evaporation ponds spread throughout the site. Mining operations at the site began in approximately 1918 and ceased in 2000.

The former Anaconda Mine site is the focus of ongoing U.S. EPA assessment, remedial, and removal activities. The U.S. EPA removal activity was initiated based on information and data generated between July 30 and August 1, 2007, during TEAM 9 START's assessment of the onsite pond areas (TDD# TO5-09-07-04-0002). The corresponding letter report, dated May 28, 2008, indicated that the soil underlying the currently dry Old Raffinate Pond had petroleum hydrocarbon concentrations that exceeded the investigation level of 100 milligrams per kilogram (mg/kg). The report documented surface soil with petroleum hydrocarbon concentrations at 75,000 mg/kg with subsurface concentrations ranging between 3,400 and 7,300 mg/kg to a depth of up to 23 feet below pond bottom.

In mid-2008, following the TEAM 9 assessment, the U.S. EPA initiated the excavation and bioremediation of petroleum hydrocarbon contaminated soil beneath the Old Raffinate Pond. The excavation was performed by the Emergency and Rapid Response Services (ERRS) contractor with technical guidance on bioremediation supplied by the U.S. EPA Environmental Response Team (ERT). The START provided on-site technical and analytical support, and the Region 9 U.S. EPA Regional Laboratory provided off-site analytical support.

START Activities

Prior to mobilization, START developed a site-specific Health and Safety Plan and initiated a site-specific Time-Critical Quality Assurance Sampling Plan (QASP). All sampling activities were performed following the site-specific QASP, dated September 24, 2008.

START arrived on site on September 22, 2008, and began technical support activities at the Old Raffinate Pond. The activities included lateral delineation and measurements of the pond. START also collected two soil samples from the pond bottom for on-site analysis. Additionally, the U.S. EPA discovered two underground vaults connected to the pond via piping. START was tasked with collecting samples of standing liquid in the vaults, which were shipped to the Region 9 U.S. EPA laboratory for analysis. START also conducted periodic air monitoring of the ambient air in the work zone during all removal and sampling activities, using a Toxic Vapor Analyzer 1000 (TVA) organic vapor monitor.

START members used a TVA's, flame ionization detector to detect petroleum hydrocarbon vapors in soil samples by heating a sample in a sampling jar and monitoring the head-space with the instrument. START also used the Petroflag® commercial chemical test kit to generate a reasonable estimate of petroleum hydrocarbon concentrations. In general, the flame ionization detector method was suited for determining whether a sample contained detectable concentrations of petroleum hydrocarbons but could not generate an estimated concentration. The Petroflag® test kits provided a reasonable estimate of petroleum hydrocarbon concentrations in the soil. All field generated soil sampling data with the definitive data from confirmation samples are presented in Table 1. All field generated soil sampling data are considered screening estimates. Data for liquid samples collected from the two vaults are presented in Table 2.

Anaconda Mine Trip Report TDD No: TO2-09-08-07-0005 December 15, 2008 Page 3

On September 23, 2008, the ERRS contractor excavated to depths between three and ten feet below pond bottom, and START collected two soil samples from the excavation bottom and conducted field analysis. Field screening analysis of samples indicated elevated petroleum hydrocarbons concentrations of greater than 4,000 mg/kg and 6,000 mg/kg, which was similar to the reported TEAM 9 assessment concentrations of 5,200 mg/kg at five feet below the surface.

On September 24, 2008, the ERRS contractor excavated to depths between 10 and 15 feet below pond bottom, and START collected three soil samples from the excavation bottom and conducted field analysis. Field screening analysis of samples from the excavation indicated elevated petroleum hydrocarbon concentrations of greater than 4,000 mg/kg, 5,800 mg/kg and 5,780 mg/kg which was similar to the reported TEAM 9 assessment concentrations of 7,200 J mg/kg at 10 feet below the surface. Field analysis of additional sample collected under the piping connecting the vaults to the pond indicated petroleum hydrocarbon concentrations of greater than 4,000 mg/kg.

START used a HAZCO Interface Meter to estimate the quantities of petroleum hydrocarbons and water in the vaults. The eastern vault had approximately a half inch of oil and approximately three feet of water while the western vault contained only wastewater (approximately three feet). Analytical information on the contents of the vaults is referenced in Table 2.

On September 25, 2008, the ERRS contractor excavated to depths between 15 and 20 feet below the pond bottom. START collected soil samples from two test pits dug in the excavation bottom by the ERRS contractor. The test pits had total depths of 23 feet and 29 feet, respectively. START also collected one composite surface soil sample from around the vaults and one composite sample from around the Old Raffinate Pond berm. The petroleum hydrocarbon concentrations in the test pits, by both field and laboratory methods, were at concentrations below the project action level (AL) of 1,000 mg/kg and the TEAM 9 investigation level of 100 mg/kg. Petroleum hydrocarbon concentrations in the surface samples were above the AL. START collected two soil samples from the excavation bottom at approximately 20 feet below pond bottom and found petroleum hydrocarbon concentrations that ranged from 215 mg/kg to greater than 4,000 mg/kg (by the field screening method). The results are presented in Table 1.

On September 26, 2008, the ERRS contractor excavated to depths of greater than 20 feet below pond bottom. START collected additional soil samples in the excavation bottom area during the excavation and found that concentrations ranged from 670 mg/kg to 1,350 mg/kg (by the field screening method).

Based on the TEAM 9 START assessment and test pit data, FOSC Dunkelman directed the ERRS contractor to stop excavation at 22 to 25 feet below pond bottom. START sampled the soil at the final pond excavation bottom and in the sidewalls to document the concentrations of petroleum hydrocarbons in soil left in place. Based upon definitive analysis methodologies, the petroleum hydrocarbon measurement concentration in the excavation bottom ranged from 60 mg/kg to 1,100 mg/kg. The final excavation bottom samples had a mean total extractable petroleum hydrocarbon (TPH) concentration of 394 mg/kg and an estimated average concentration based on a upper confidence level of 95% (UCL 95%) of 726 mg/kg. The

sidewalls sample concentration ranged from 610 mg/kg to 13,000J mg/kg with a mean TPH concentration of 3,400 mg/kg. The results are presented in Table 3.

On September 27, 2008, START collected global positioning system data for the excavation area, vaults, and bioremediation areas. START sampled the soil in the bioremediation areas to document the initial concentrations of petroleum hydrocarbons in bioremediation cells. The results are presented in Table 4.

Field analytical confirmation samples, samples collected from the final excavation bottom and samples from the bioremediation cells were delivered to the Region 9 U.S EPA laboratory for TPH analysis.

On October 6, 2008, following the removal of the concrete vaults, the ERRS contractor excavated to approximately 13 feet below ground surface in the vault area. START collected soil samples from the vault excavation bottom and the sidewalls to document the concentration of petroleum hydrocarbons in soil left in place. These samples were delivered to the Region 9 U.S. EPA laboratory for TPH analysis. The final excavation samples had a mean total extractable petroleum hydrocarbon (TPH) concentration of 36,834 mg/kg and an estimated average concentration based on a upper confidence level of 95% (UCL 95%) of 13,594 mg/kg. The results are presented in Table 3 along with the results of the soil left in place in the pond excavation area.

All non-screening data presented in Tables 1 through Table 4 are were reviewed, qualified as necessary, and validated. In relationship to the action levels, the screening data confirmation samples were found to be in agreement with the corresponding screening data.

ERRS Contractor Activities

The ERRS contractor excavated a total of 7,500 cubic yards of contaminated soil from the Old Raffinate Pond and 720 cubic yards of contaminated soil from the vault area and placed it into two bioremediation cells. The areal extent of the excavation is indicated in Figure 2. The ERRS contractor also transferred approximately 8,000 gallons of contaminated wastewater from the two vaults onto the two bioremediation cells after using absorbent pads to remove the free product from the surface of the vaults.

At the time of START departure from the site on September 27, the ERRS contractor had constructed two bioremediation cells that covered approximately 2.5 acres with 2 feet of soil. The locations of the bioremediation cells are indicated in Figure 3.

Future START Activities

As directed by the U.S. EPA FOSC, START will conduct sampling of the bioremediation cells to monitor and document the biological attenuation process. Future sampling activities are expected in the spring of 2009.

Conclusion

The START was tasked by FOSC Dunkelman to provide technical assistance at the Anaconda Mine site in Yerington, Nevada. START provided work-zone air monitoring, field sampling,

field analysis, and the coordination of wastewater and post-excavation soil sample analysis by the U.S. EPA's regional laboratory. The laboratory analysis documented the concentration of petroleum hydrocarbons left in place and documented the pre-bioremediation concentration of petroleum hydrocarbons in treatment cells.

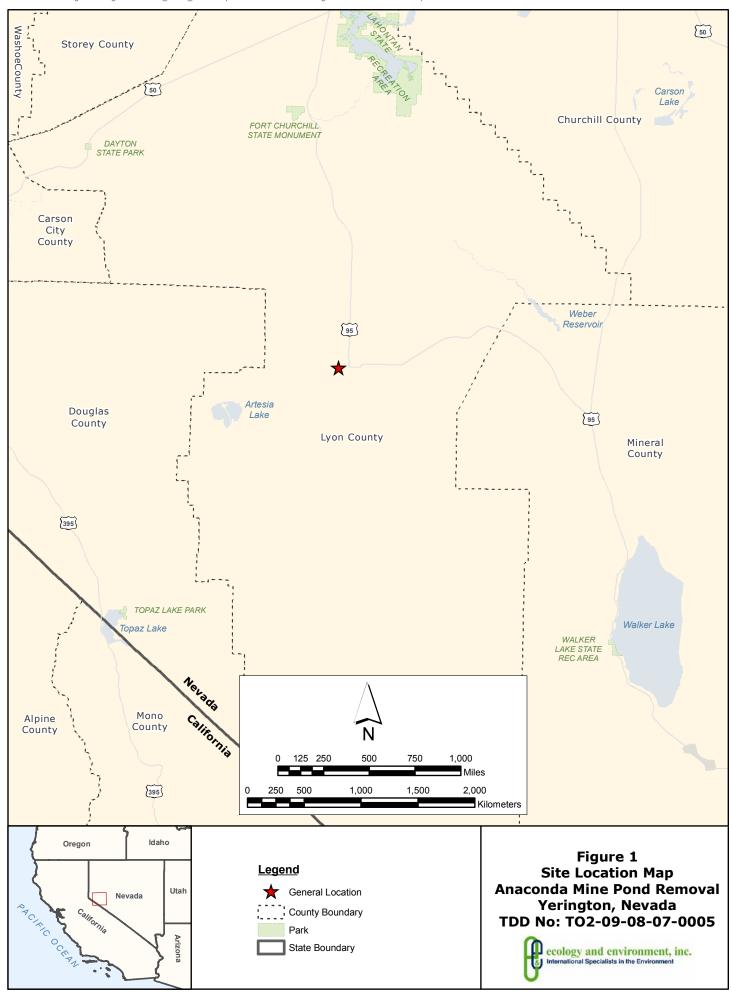
A total of 8,220 cubic yards of contaminated soil was excavated and placed into the two bioremediation treatment cells.

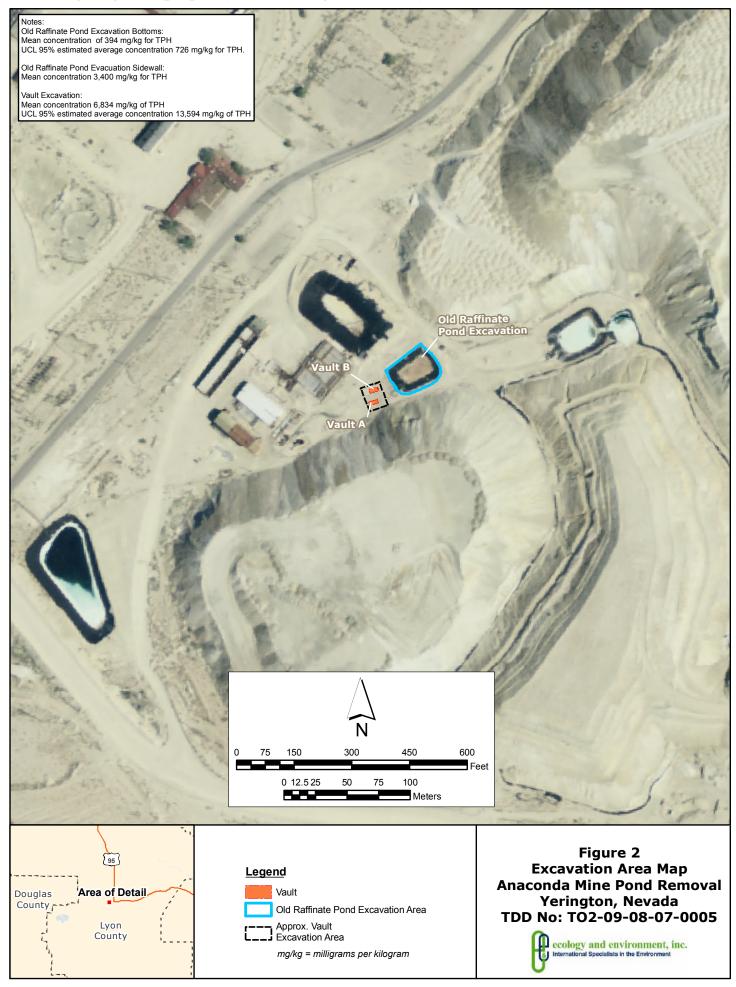
Please contact me if you have any questions regarding START's activities associated with this project.

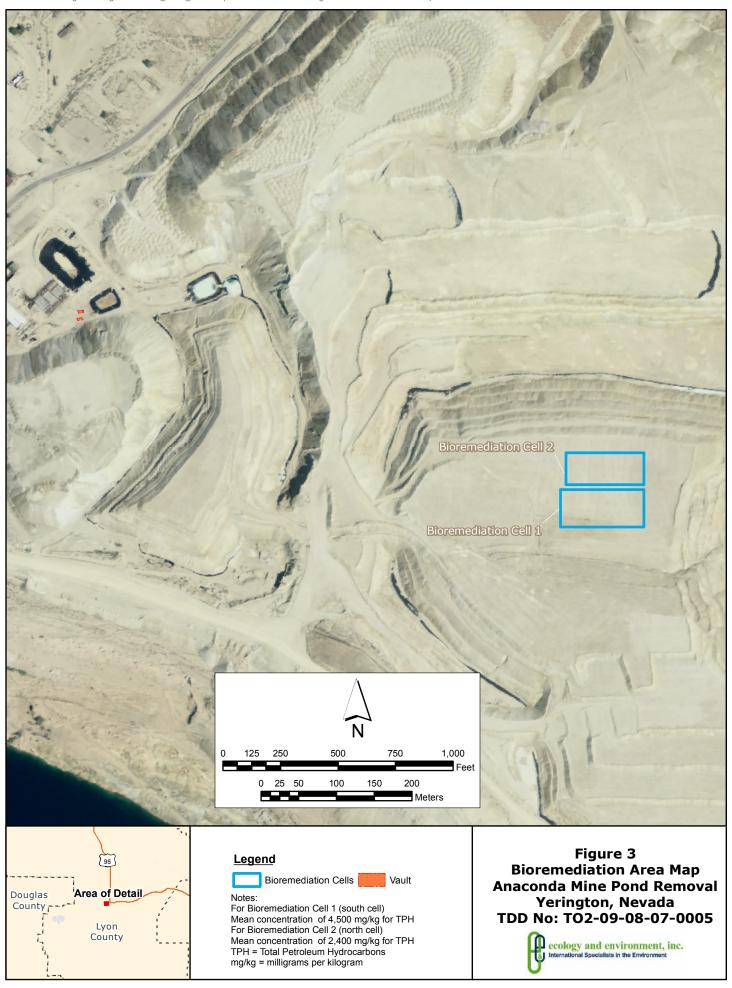
Respectfully,
Through I Educate

Howard Edwards START Member

Attachments: A – Figures


B-Tables


C – Photo Documentation D – Laboratory Data Reports


cc: file

ATTACHMENT A

FIGURES

ATTACHMENT B

TABLES

Table 1 Anaconda Mine Pond Removal TDD No: TO2-09-08-07-0005

Field Analysis Results with Corresponding **Validated Laboratory Data**

	Date	Petroflag® Field Screening Data	Validated Laboratory Data
Sample Location		mg/kg	mg/kg
Old Raffinate Pond. Excavation bottom soil sample at 3 feet below the pond bottom.	9-23-2008	> 4,000	NA
Old Raffinate Pond. Excavation bottom soil sample at 3 feet below the pond bottom.	9-23-2008	6,000	NA
Old Raffinate Pond. Excavation bottom soil sample at 10 feet below the pond bottom.	9-24-2008	5,800	NA
Background surface sample	9-24-2008	680	NA
Old Raffinate Pond. Excavation bottom soil sample at 10 feet below the pond bottom.	9-24-2008	> 4,000	NA
Old Raffinate Pond. Excavation bottom soil sample at 15 feet below the pond bottom.	9-24-2008	5,780	NA
Soil from under pipes between vault and Old Raffinate Pond	9-24-2008	> 4,000	NA
Surface soil from around vaults	9-25-2008	1800	NA
Surface soil from around berms	9-25-2008	1400	NA
Background surface soil sample	9-25-2008	370	NA
Old Raffinate Pond. Excavation bottom soil sample at 20 feet below the pond bottom.	9-25-2008	215	NA
Old Raffinate Pond. Excavation bottom soil sample at 20 feet below the pond bottom.	9-25-2008	> 4,000	NA
Test pit soil sample collected at an estimated 23 feet below the original pond bottom.	9-25-2008	68	3.4 J
Test pit soil sample collected at and estimated 29 feet below the original pond bottom	9-25-2008	51	4.6 J
Old Raffinate Pond. Excavation bottom soil sample at 20 feet below the pond bottom.	9-26-2008	1,150	NA
Old Raffinate Pond. Excavation bottom soil sample at 20 feet below the pond bottom.	9-26-2008	1,350	NA
Old Raffinate Pond. Excavation bottom soil sample at 20 feet below the pond bottom.	9-26-2008	670	NA
Final Old Raffinate Pond bottom soil sample from Western section ¹	9-26-2008	600	350 *
Final Old Raffinate Pond bottom soil sample from Eastern section ²	9-26-2008	850	310 **
Bioremediation Cell 1 ³	9-27-2008	5,300	4,500 ***
Bioremediation Cell 2 west half	9-27-2008	> 4,000	3,200

¹The sample analyzed in the field was a composite made from three samples; 22-A, 23-C and 25-E.

² The sample analyzed in the field was a composite made from three samples; 22-B, 23-D and 25-F.

³ The sample analyzed in the field was a composite made from two samples; BTA-3 and BTA-4. mg/kg = milligrams per kilogram NA = Not Analyzed

^{* =} Calculated mean for samples 22-A, 23-C and 25-É. Actual measurements are located in Table 3.

** = Calculated mean for samples 22-B, 23-D and 25-F. Actual measurements are located in Table 3.

^{*** =} Calculated mean for samples BTA-3 and BTA-4. Actual measurements are located in Table 4.

Table 2 **Anaconda Mine Pond Removal** TDD No: TO2-09-08-07-0005

Vault Samples EPA Method 8260, EPA Method 8082, and EPA Method 8015 Validated Laboratory Data

	Sample ID	V-A	V-B	V-A-D	V-A-2
	Sample Location	Wastewater in Eastern Vault	Wastewater in Western Vault	Wastewater in Eastern Vault Duplicate	Non Aqueous Phase Liquid in Eastern Vault
Analytes	Units	ug/L	ug/L	ug/L	ug/L
Benzene		NA	NA	NA	ND (1,200 U)
Toluene		NA	NA	NA	ND (1,200 U)
Ethylbenzene		NA	NA	NA	ND (1,200 U)
m-Xylene & p-Xylene		NA	NA	NA	ND (1,200 U)
o-Xylene		NA	NA	NA	ND (1,200 U)
Isopropylbenzene		NA	NA	NA	ND (1,200 U)
N-Propylbenzene		NA	NA	NA	ND (1,200 U)
1,3,5-Trimethylbenzene		NA	NA	NA	ND (1,200 U)
1,2,4-Trimethylbenzene		NA	NA	NA	ND (1,200 U)
sec-Butylbenzene		NA	NA	NA	ND (1,200 U)
4-Isopropyltoluene		NA	NA	NA	ND (1,200 U)
Naphthalene		NA	NA	NA	ND (1,200 U)
Methylene Chloride		NA	NA	NA	ND (1,200 U)
cis-1,2-Dichloroethene		NA	NA	NA	ND (1,200 U)
Trichloroethene		NA	NA	NA	ND (1,200 U)
Tetrachloroethene		NA	NA	NA	ND (1,200 U)
Chloroform		NA	NA	NA	ND (1,200 U)
Diesel Range Total Petroleu Hydrocarbon (C12-C24)	ım	3,000,000 J	11,000	1,200,000 J	NA
Polychlorinated Biphenyl		NA	NA	NA	ND (1,400 U)

1,200 U = Quantitation Limit ug/L = micrograms per liter

J = Estimated Concentration

ND = Not Detected above the Reporting Limit

NA = Not Analyzed or Determined

Table 3 Anaconda Mine Pond Removal TDD No: TO2-09-08-07-0005

Soil Left In Place Old Raffinate Pond and Vault Excavation Validated Laboratory Data

Sample Location	Date	Sample Identification	Region 9 Laboratory TPH by EPA Method 8015
			mg/kg
Old Raffinate Pond excavation bottom.	0.24.2000		500
North East Section at 22 feet	9-26-2008	22-A	600
Old Raffinate Pond excavation bottom.			
Central East Section Background sample at			
23 feet	9-25-2008	23-C	380 J
Old Raffinate Pond excavation bottom.			
South East Section at 25 feet	9-25-2008	25-E	85
Old Raffinate Pond excavation bottom.			
North West Section at 22 feet	9-25-2008	22-B	1,100
Old Raffinate Pond excavation bottom.			
Central West Section Background sample at			
23 feet	9-25-2008	23-D	60 J
Old Raffinate Pond excavation bottom.			
South West Section at 25 feet	9-25-2008	25-F	140
Old Raffinate Pond excavation south side			
wall at 19 feet	9-25-2008	19-SW	610
Old Raffinate Pond excavation east side wall			
at 19 feet	9-25-2008	19-EW	5,700
Old Raffinate Pond excavation north side			
wall at 17 feet	9-25-2008	17-NW	3,900 J
Vault excavation south east side wall at 10.5			
feet	10-6-2008	VAS-1	13,000 J
Vault excavation north east side wall at 5			
feet	10-6-2008	VAS-2	4.1 J
Vault excavation north side wall at 9 feet			
	10-6-2008	VAS-3	3.3 J
Vault excavation west side wall at 6 feet			
	10-6-2008	VAS-4	1,100 J
Vault excavation south side wall at 10 feet	10		
	10-6-2008	VAS-5	20,000 J
Vault excavation bottom at 13 feet	10 6 2000	MAG	C 000 I
mg/kg = milligrams per kilogram J = E	10-6-2008 stimated Conc	VAS-6	6,900 J

Table 4 Anaconda Mine Pond Removal TDD No: TO2-09-08-07-0005

Soil in Bioremediation Cells Validated Laboratory Data

Sample Location	Date	Sample Identification	Region 9 Laboratory TPH by EPA Method 8015
			mg/kg
Cell 1 East Half	9-27-2008	BTA-3	4,000 J
Cell 1 West Half	9-27-2008	BTA-4	5,000 J
Cell 2 East Half	9-27-2008	BTA-1	1,600
Cell 2 West Half	9-27-2008	BTA-2	3,200

mg/kg = milligrams per kilogram

ATTACHMENT C

PHOTO DOCUMENTATION

Anaconda Mine Pond Removal Support, Yerington, Nevada, Lyon County, Nevada

PAN#:002693.2009.01RF TDD No: TO2-09-08-07-0005 Photographer: Ben Simes Date: September 2008

Photo 1: Old Raffinate Pond prior to excavation after liner removal.

Photo 2: Concrete vaults just south of Old Raffinate Pond.

Anaconda Mine Pond Removal Support, Yerington, Nevada, Lyon County, Nevada

PAN#:002693.2009.01RF TDD No: TO2-09-08-07-0005

Photographer: Ben Simes Date: September 2008

Photo 3: Old Raffinate Pond excavation at approximately 5 feet.

Photo 4: Piping connecting the Old Raffinate Pond to vaults.

Anaconda Mine Pond Removal Support, Yerington, Nevada, Lyon County, Nevada

PAN#:002693.2009.01RF TDD No: TO2-09-08-07-0005

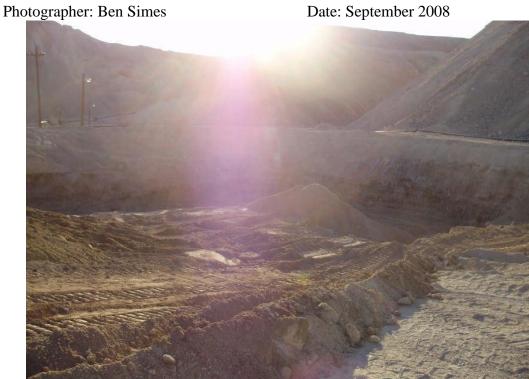


Photo 5: Old Raffinate Pond excavation at approximately 15 feet.

Photo 6: Old Raffinate Pond during excavation to approximately 23 feet.

Anaconda Mine Pond Removal Support, Yerington, Nevada, Lyon County, Nevada

PAN#:002693.2009.01RF TDD No: TO2-09-08-07-0005 Photographer: Ben Simes Date: September 2008

Photo 6: Old Raffinate Pond excavation at approximately 23 feet.

Photo 6: Bioremediation cells with soil excavated from the Old Raffinate Pond.

Anaconda Mine Pond Removal Support, Yerington, Nevada, Lyon County, Nevada

PAN#:002693.2009.01RF TDD No: TO2-09-08-07-0005 Photographer: Ben Simes Date: September 2008

Photo 7: Vault excavation to the East.

Photo 8: Vault excavation to the North.

ATTACHMENT D

LABORATORY DATA REPORTS

1337 S. 46th Street, Building 201, Richmond, CA 94804 Fax:(510) 412-2302 Phone:(510) 412-2300

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08267A

Project Number: R08S96

75 Hawthorne Street

Reported: 10/10/08 11:22

Project: Anaconda Mine Old Ráffinate Pond

San Francisco CA, 94105

Sampling

Sample Results		٠.							
Analyte	Rennalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	đ Method
Lab ID: 0809039-01							Water -	Sampled	: 09/22/08 12:30
Sample ID: VA TPH as Diesel TPH as Motor Oil	RE2 RE3	3,000,000 ND		250,000 75,000	Extract: ug/L	able Petroleu B810149 "	n Hydrocarl 09/25/08	09/29/08	PA Method 8015B 8015B/SOP385 8015B/SOP385
Surrogate: Hexacosane	RE3	2,130		86 %	70-130%	'n	"	,	
Lab ID: 0809039-02				11.00			Water -	Sampled	: 09/22/08 12:40
Sample ID: VAD TPH as Dieset TPH as Motor Oil	REI	1,200,000 ND	-	25,000 31,000	Extracta ug/L	nble Petrolem B810125 . "	n Hydrocarb •09/23/08 "	09/25/08	PA Method 8015B 8015B/SOP385 8015B/SOP385
Surrogate: Hexacosane		2,190		88 %	70-130%	"	"	rr rr	4
Lab ID: 0809039-03					•		Water -	Sampled	: 09/22/08 12:35
Sample ID: VB TPH as Diesel TPH as Motor Oil	REI REI	11,000 ND	U	2,500 10,000	Extracta ug/L	able Petroleur B810149 "	n Hydrocarb 09/25/08 "		PA Method 8015B 8015B/SOP385 8015B/SOP385
Surrogate: Hexacosane	REI	2,080		84 %	70-130%	u	"	n	

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08267A

Project Number: R08S96

75 Hawthorne Street

Reported: 10/10/08 11:22

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

Sampling

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B810125 - 3520B CLLE - TPH - Ex	ctractable	•						Prepared	: 09/23/08 A	nalyzed: 0	9/24/0
				Extractable	e Petrole	eum Hydro	carbons b	y EPA M	ethod 8015B	- Quality	Contra
Blank (B810125-BLK1)		•					•				
TPH as Diesel	ND		U		ug/L						
TPH as Motor Oil	ND		U	1,000	n .					 	
Surrogate: Hexacosane		241			"	250		96	70-130		
LCS (B810125-BS1)											·
TPH as Diesel	1,950			250	ug/L	2500		. 78	70-130		200
Surrogate: Hexacosane		243			n	250		97	70-130		
Batch B810149 - 3520B CLLE - TPH - Ex Blank (B810149-BLK1)	a actable			Extractable	e Petrole	um Hydro		•	: 09/25/08 A ethod 8015B	•	
TPH as Diesel	ND		U .	250	ug/L						
TPH as Diesel TPH as Motor Oil	ND ND		U .	250 1,000							· · · • • · · ·
		225				250		90	70-130	.	
TPH as Motor Oil		225			f f	250		90	70-130		
TPH as Motor Oil Surrogale: Hexacosane		225		1,000	f f	250 2500	•	90 90	70-130 70-130		200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1)	ND	225		1,000	#						200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogate: Hexacosane	ND			250	" ug/L	2500		90	70-130		200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel	ND			250	ug/L	2500	10,800	90 96	70-130		290
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1)	ND 2,260			250 	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96	70-130 70-130		
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1) TPH as Diesel Surrogale: Hexacosane	ND 2,260	239		250 250 2039-03RE1 2,500	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96 103	70-130 70-130 70-130		
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1) TPH as Diesel	ND 2,260	239	Source: 080	250 250 2039-03RE1 2,500	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96 103 92	70-130 70-130 70-130	3	

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08273B

Project Number: R08S96

75 Hawthorne Street

Reported: 10/16/08 09:48

Project: Anaconda Mine Old Raffinate Pond

Sampling

San Francisco CA, 94105

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809059-01							Soil -	Sampled	: 09/27/08 13:2
Sample ID: BTA-1 TPH as Diesel	RE1	1,600		65	Extracta mg/kg dry	ible Petroleun B8J0018	n Hydrocarl 10/03/08	ons by EF 10/07/08	A Method 80151 8015B/SOP385
TPH as Motor Oil	RE1	ND	U	260	я	n	10	н	8015B/SOP385
Surrogate: Hexacosane	RE1	24.4		75 %	70-130%	"	u	"	
Sample ID: BTA-1 : % Solids		93		1	Convent	ional Chemist B8J0029			IA/EPA Method % calculation
Lab ID: 0809059-02							Soil -	Sampled	09/27/08 13:3
Sample ID: BTA-2 TPH as Diesel	RE1	3,200		63	Extracta mg/kg dry	ble Petroleum B8J0018			A Method 80151 8015B/SOP385
TPH as Motor Oil	RE1	ND	U	250	n	n		17	8015B/SOP385
Surrogate: Hexacosane	REI	26.0		82 %	70-130%	"	"	n	
Sample ID: BTA-2 % Solids		95		1 ·	Conventi %	onal Chemisti B8J0029	ry Paramete 10/06/08	ers by APF 10/07/08	IA/EPA Method % calculation
Lab ID: 0809059-03	-					•	Soil -	Sampled:	09/27/08 13:4
Sample ID: BTA-3 FPH as Diesei	RB1	4,000	J, Q7 ゴ	160	Extracta mg/kg dry	ble Petroleum B8J0018			A Method 80151 8015B/SOP385
TPH as Motor Oil	RB1	ND	U, J, Q7	640	n	н,	ŧŧ	rs	8015B/SOP385
Surrogate: Hexacosane	RE1	21.6		67 %	70-130%	"	"	"	
Sample ID: BTA-3 6 Solids		94		1	Conventi %	onal Chemistr B8J0029			A/EPA Method % calculation
ab ID: 0809059-04							Soil -	Sampled:	09/27/08 13:50
ample ID: BTA-4 PH as Diesel	RE1	. 5,000	J, Q7 J	160	Extractal mg/kg dry	ble Petroleum B8J0018			A Method 8015B 8015B/SOP385
PH as Motor Oil	REi	ND	Ü, J, Q7	650	п	tt	11	H	8015B/SOP385
urrogate: Hexacosane	REI	19.1		59 %	70-130%	n	n	11	
ample ID: BTA-4 6 Solids	,	93		1	Conventio	nial Chemistr B8J0029			A/EPA Methods % calculation
ab ID: 0809059-05	1	-					Soil - S	Sampled:	09/27/08 13:35
ample ID: BTA-1002 PH as Diesel	RE1	3,500		64	Extractal mg/kg dry	ole Petroleum B8J0018			A Method 80151 8015B/SOP385
PH as Motor Oil	RE1	ND	U	250	п	II .	**	tf	8015B/SOP385
urrogate: Hexacosane	RE1	24.3	<u> </u>	76%	70-130%	11	"	"	
ample ID: BTA-1002 Solids	•	94		1	Convention	nal Chemistr B8J0029	y Paramete 10/06/08	rs by APH 10/07/08	A/EPA Methods % calculation

mil 12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street

San Francisco CA, 94105

SDG: 08273B

Reported: 10/16/08 09:48

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitation Limit	n Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0018 - 3545 ASE/PFE - TP	H - Extractable			Extracta	ble Petrole	um Hydro		-	: 10/03/08 A ethod 8015B	-	
Blank (B8J0018-BLK1)						,		,		•	
TPH as Diesel	ND		U		5 mg/kg wet						
TPH as Motor Oil	ND		U		20 "	···					
Surrogate: Hexacosane		4,43			"	5.00		89	70-130		
LCS (B8J0018-BS1)										•	
TPH as Diesel	44.4		· · · · · · · · · · · · · · · · · · ·		5 mg/kg wet	50.0		89	70-130	<u>.</u>	200
Surrogate: Hexacosane		4.64			Ħ	5.00		93	70-130		
Matrix Spike (B8J0018-MS1)			Source: 080	9059-02RE1							
TPH as Diesel	Not Reported		C2, Q10	11.00 00000	63 mg/kg dry	315	3,160	NR	70-130		25
Surrogate: Hexacosane		23.8	·		"	<i>31.5</i> .		76	70-130	· _	
Matrix Spike Dup (B8J0018-MSD1)			Source: 080	9059-02RE1	-	÷	***				
TPH as Diesel	Not Reported		C2, Q10		64 mg/kg dry	319 ·	3,160	NR	70-130	2	25
•	٠	•									
Surrogate: Hexacosane		24.2			<i>,,</i>	31.9	-	76	70-130		
Batch B8J0029 - Solids, Dry Weight (F Weight	rep) - Solids, Dry			Conventi	onal Chemi	stry Paran			10/06/08 Ar A Methods -		
Blank (B8J0029-BLK1)								•			
% Solids	ND		U		1 %						
Duplicate (B8J0029-DUP1)			Source: 080	9059-01							
% Solids	93				1 %		93			0	20

12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

Project Number: R08S96

75 Hawthorne Street

SDG: 08273C

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

Reported: 10/23/08 14:55

Sampling

Sam	nle	Res	ults

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809060-01							Soil -	· Sampled	: 09/26/08 14:
Sample ID: 23-D					Extracta	ble Petroleu			A Method 801:
TPH as Diesel		60		5.5	mg/kg dry	B8J0004	10/01/08		8015B/SOP38:
TPH as Motor Oil		ND	U	22	ft.	н	tt	. "	. 8015B/SOP385
Surrogate: Hexacosane		4.47	•	81 %	70-130%	п	Ħ	u	
Sample ID: 23-D					Conventi	ional Chemis	try Paramet	ers by API	HA/EPA Metho
% Solids		91		1	%	B8J0057	10/13/08	10/14/08	% calculation
Lab ID: 0809060-02							Soil -	Sampled	: 09/26/08 14::
Sample ID: 23-DD					Extracta	ble Petroleur	n Hydrocarl	ons by EP	A Method 8015
TPH as Diesel		19	J	6	mg/kg dry	B8J0004	10/01/08	10/08/08	8015B/SOP385
TPH as Motor Oil		ND	U	24	19	и	Ħ	н	8015B/SOP385
Surrogate: Hexacosane		4.28		. 70 %	70-130%	"	"	"	•
Sample ID: 23-DD			•		Conventi		try Paramete	ers by API	IA/EPA Method
% Solids		83		1	%	B8J0057			% calculation
Lab ID: 0809060-03							Soil -	Sampled:	09/26/08 09:2
Sample ID: 19-SW					Extractal	ble Petroleun			A Method 8015
PH as Diesel	RE1	-610		52	mg/kg dry	B8J0004	10/01/08		8015B/SOP385
TPH as Motor Oil		ND	U	21	ų	11	Ħ	10/09/08	8015B/SOP385
urrogate: Hexacosane		3.83		73 %	70-130%	. "	"	n	
lample ID: 19-SW				•	Convention		ry Paramete	ers by APH	A/EPA Method % calculation
6 Solids Lab ID: 0809060-04		96		1	76	B8J0057			
									09/26/08 14:2
ample ID: 25-F				- 4					A Method 8015
PH as Diesel		140	**	5.4	mg/kg dry	B8J0004	10/01/08		8015B/SOP385 8015B/SOP385
PH as Motor Oil	. •	ND	U ·	22					
urrogate: Hexacosane		4.69		86 %	70-130%	"	. #	"	
ample ID: 25-F 6 Solids		93		1	Convention	mal Chemist B8J0057			A/EPA Method % calculation
ab ID: 0809060-05							Soil -	Sampled:	09/25/08 09:3
ample ID: 29-TP					Kytraciah	le Petroleum	Hydrocarb	ons by EP	A Method 8015
PH as Diesel		4.6	CI, J	5.6	mg/kg dry	B8J0004	10/01/08	10/08/08	8015B/SOP385
PH as Motor Oil		ND		22	tt		ŧt	92	8015B/SOP385
urrogate: Hexacosane		4.97	•	88 %	70-130%	ø	"	<i>i</i>	<u> </u>
ample ID: 29-TP Solids	-	89		. 1	Conventio	nal Chemisti B8J0057			A/EPA Method % calculation
ab ID: 0809060-06		07		<u> </u>					09/26/08 14:2
imple ID: 25-E					Extractch	la Patroloum		-	Method 80151
PH as Diesel .		85		5.3	mg/kg dry	B8J0004			8015B/SOP385
•		ND							8015B/SOP385

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone.(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

Project Number: R08S96

75 Hawthorne Street

Project: Anaconda Mine Old Raffinate Pond Sampling

San Francisco CA, 94105

SDG: 08273C Reported: 10/23/08 14:55

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	ed Method
Lab ID: 0809060-06							Soil -	Sampled	l: 09/26/08 14:2
Sample ID: 25-E Surrogate: Hexacosane		4.24		79 %	Extract 70-130%	able Petroleur <i>B8J0004</i>		bons by El 10/08/08	PA Method 8015
Sample ID: 25-E % Solids		94		1	Conven	tional Chemis B8J0057	try Paramet 10/13/08	ers by AP 10/14/08	HA/EPA Method % calculation
Lab ID: 0809060-07		•		-			Soil -	Sampled	: 09/26/08 14:1
Sample ID: 22-A · TPH as Diesel	RE1	600		56	Extract mg/kg dry	able Petroleum B8J0004	n Hydrocarl 10/01/08		PA Method 8015 8015B/SOP385
TPH as Motor Oil		ND	U	22	"	11	89	10/09/08	8015B/SOP385
Surrogate: Hexacosane	•	4.69		83 %	70-130%	"	"	"	
Sample ID: 22-A % Solids		90		1	Conven	tional Chemist B8J0057			HA/EPA Method % calculation
Lab ID: 0809060-08							Soil -	Sampled	: 09/26/08 14:1
Sample ID: 22-B FPH as Diesel	RE1	1,100		110	Extracta mg/kg dry	able Petroleun B8J0004			PA Method 8015 8015B/SOP385
ГРН as Motor Oil		18	J	22	11	tt	11	10/09/08	8015B/SOP385
Gurrogate: Hexacosane		4.31		80 %	70-130%	n .	u	n	
Sample ID: 22-B & Solids		93		1	Convent	ional Chemist B8J0057			IA/EPA Method % calculation
ab ID: 0809060-09							Soil -	Sampled:	09/26/08 14:4
ample ID: 17-NW PH as Diese!	REI	3,900	J. 07 J	260	Extracta mg/kg dry	ble Petroleum B8J0004	Hydrocarb 10/01/08	ons by EP 10/09/08	A Method 8015 8015B/SOP385
PH as Motor Oil		-	J, Q7, U	58	11	*1	स		8015B/SOP385
urrogate: Hexacosane		3.22		61 %	70-130%	n	"	n	
ample ID: 17-NW 5 Solids		95	-	1	Convent	ional Chemisti B8J0057			IA/EPA Method % calculation
ab ID: 0809060-10							Soil -	Sampled:	09/26/08 14:4
ample ID: 19-EW PH as Diesel	. RE1	5,700		540	Extracta mg/kg dry	ble Petroleum B8J0004	Hydrocarb 10/01/08	ons by EP. 10/09/08	A Method 80151 8015B/SOP385
PH as Motor Oil		ND	υ.	86	"	11	**	10/09/08	8015B/SOP385
urrogate: Hexacosane		3.90		72 %	70-130%	<i>u</i> .	"	"	-
ample ID: 19-EW Solids		93		. 1	Conventi %	onal Chemistr B8J0057			A/EPA Method % calculation
ab ID: 0809060-11							Soil - S	Sampled:	09/26/08 14:2
nmple ID: 25-ED PH as Diesel		98		5.3	Extractal mg/kg dry	ble Petroleum B8J0004			A Method 80151 8015B/SOP385
PH as Motor Oil		ND	U	21	н	23	10 -	11	8015B/SOP385
rrogate: Hexacosane		4.22		78 %	70-130%	. "	n		
mple ID: 25-ED Solids		94		1	Conventi	onal Chemistr B8J0057	y Parametei	s by APH	A/EPA Methods % calculation

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08273C

Project Number: R08S96

75 Hawthorne Street

Reported: 10/23/08 14:55

Project: Anaconda Mine Old Raffinate Pond

Sampling

San Francisco CA, 94105

Sample Results

Analyte	Reanalysis / Extract		Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809060-12		-	•				Soil -	Sampled	: 09/25/08 09:25
Sample ID: 23-TP					Extracta	ble Petrolem	m Hydrocarl	one by RP	A Method 8015B
TPH as Diesel		3.4	C1, F1, J	5.3	mg/kg dry	B8J0004	10/01/08		8015B/SOP385
TPH as Motor Oil		ND	U	21	ù		11		8015B/SOP385
Surrogate: Hexacosane		4.18		79 %	70-130%	n	"	ıı.	
Sample ID: 23-TP					Conventi	onal Chemis	try Paramete	re by APF	IA/EPA Methods
% Solids		95	•	1	%	B8J0057	10/13/08		% calculation
Lab ID: 0809060-13							Soil -	Sampled:	09/26/08 14:20
Sample ID: 23-C IPH as Diesel	RE1	380	J, Q7 丁	11	Extracta mg/kg dry	ble Petroleur B8J0004	n Hydrocarb 10/01/08		A Method 8015B 8015B/SOP385
ГРН as Motor Oil	-	ND	Q7, U	22	+1	n	ti	10/09/08	8015B/SOP385
Surrogate: Hexacosane		3.31	•	61 %	70-130%	tt.	H	H	
Sample ID: 23-C					Conventi	onal Chemist	ry Paramete	rs by APH	A/EPA Methods
% Solids		93		1	%	B8J0057	10/13/08		% calculation

mil 12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08273C

Reported: 10/23/08 14:55

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitatio Limit	n · Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0004 - 3545 ASE/PFE - TI	PH - Extractable							Prepared	: 10/01/08 A	nalyzed: 1	10/08/0
Disease (DOTOOOL DE VAN				Extracta	ble Petrole	um Hydro	carbons b	y EPA M	ethod 8015B	- Quality	Contro
Blank (B8J0004-BLK1)											
TPH as Diesel	ND		U		5 mg/kg wet	*					
TPH as Motor Oil	. ND		U	<u> </u>	20 "					•	
C		4.00		,							
Surrogate: Hexacosane		4.22				5.00		84	70-130		
LCS (B8J0004-BS1)											
TPH as Diesel	50.1				5 mg/kg wet	50.0		100	70-130		200
Surrogate: Hexacosane		4.80			"	5.00		96	70-130		
Matrix Spike (B8J0004-MS1)			Source: 080	9060-08							
TPH as Diesel	Not Reported		Q10	5	.4 mg/kg dry	54.1	1,040	NR	70-130		25
Surrogate: Hexacosane		4.07			u	5.41		75	70-130		
Matrix Spike Dup (B8J0004-MSD1)			Source: 0809	0060-08							
TPH as Diesel	Not Reported		Q10		.4 mg/kg dry	54.1	1,040	NR	70-130	0.07	25
Surrogate: Hexacosane		4.48			п	5.41		83	70-130		-
Batch B8J0057 - Solids, Dry Weight (Weight	Prep) - Solids, Dry		2	Conventio	nal Chamb	efry Paran		_	10/13/08 Ar A Methods -	-	
Blank (B8J0057-BLK1)				Contenue	mat Chellin		netera ny F	i iiri/isi	A MEHIOUS .	Quanty C	one or
% Solids	ND		U		1 %						
Duplicate (B8J0057-DUP1)	. , , , , , , , , , , , , , , , , , , ,		Source: 0809	060-06							
% Solids	94				1 %		94			0	20

12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08282A

Project Number: R08S96

75 Hawthorne Street San Francisco CA, 94105 - Reported: 10/24/08 13:30

Project: Anaconda Mine Old Raffinate Pond

Sampling

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	u Units	Batch	Prepared	Analyze	d Method
Lab ID: 0810012-01				-			Soil -	Sampled	: 10/06/08 11:1
Sample ID: VAS-1006-14'-01				•	Extracta	able Petroleun	n Hydrocar	bons by EI	PA Method 80151
TPH as Diesel	RE2	•	J, Q7 J	530	mg/kg dry	B8J0041			8015B/SOP385
TPH as Motor Oil	RE1	ND	J, Q7, U	210	16	п	· p	10/09/08	8015B/SOP385
Surrogate: Hexacosane	REI	3.46		66 %	70-130%	, n		#	
Sample ID: VAS-1006-14'-01 % Solids		95		1	Convent %	ional Chemist B8J0043	ry Paramet 10/08/08	ers by API 10/09/08	HA/EPA Method: % calculation
Lab ID: 0810012-02							Soil -	Sampled	: 10/06/08 11:12
Sample ID: VAS-1006-6'-02		•			Extracta	ıble Petroleun	Hydrocarl	ons by EP	A Method 8015E
TPH as Diesel			C1, J	5.2	mg/kg dry	B8J0041	10/08/08	10/09/08	8015B/SOP385
TPH as Motor Oil		ИD	U .	21	11	Ð	11		.8015B/SOP385
Surrogate: Hexacosane		4.31		83 %	70-130%	"	"	H	
Sample ID: VAS-1006-6'-02									IA/EPA Methods
% Solids Lab ID: 0810012-03	-	97		1	%	B8J0043			% calculation
Sample ID: VAS-1006-9'-03									10/06/08 11:14
TPH as Diesel		. 33	CI, J	5.1	Extractal mg/kg dry	ble Petroleum B8J0041			A Method 8015B 8015B/SOP385
PH as Motor Oil		ND		20	*	11	11		8015B/SOP385
urrogate: Hexacosane		4.62		90 %	70-130%	Ħ	n	n	
ample ID: VAS-1006-9'-03 6 Solids		98		1	Conventi %	onal Chemistr B8J0043			IA/EPA Methods % calculation
ab ID: 0810012-04							Soil -	Sampled:	10/06/08 11:15
ample ID: VAS-1006-9'-04					Extractal	ble Petroleum	Hydrocarb	ons by EP	A Method 8015B
PH as Diesel	RE1	1,100		52	mg/kg dry	B8J0041			8015B/SOP385
PH as Motor Oil		ND	U	62	**	at .		10/10/08	8015B/SOP385
urrogate: Hexacosane		4.22		81 %	70-130%	"	"	"	
mple ID: VAS-1006-9'-04					Convention	onal Chemistr	y Paramete	rs by APH	A/EPA Methods
Solids		96		1	%	B8J0043			% calculation
ab ID: 0810012-05	•						Soil - S	Sampled:	10/06/08 11:17
ample ID: VAS-1006-12'-05					Extractab		Hydrocarb	ons by EPA	Method 8015B
PH as Diesel	RE2	20,000	**	520	mg/kg dry	B8J0041	10/08/08		8015B/SOP385
PH as Motor Oil	RE1	ND	U	260		. "		10/10/08	8015B/SOP385
rrogate: Hexacosane	REI	3.65		70 %	70-130%	"			
mple ID: VAS-1006-12'-05 Solids		96		1	Convention%	nal Chemistry B8J0043			A/EPA Methods % calculation
ab ID: 0810012-06						****	Soil - S	Sampled:	10/06/08 11:20
mple ID: VAS-1006-13'-06 PH as Diesel	RE2	6,000	1, Q7 J	260		le Petroleum I B8J0041			Method 8015B 8015B/SOP385
H as Motor Oil	REI		r, Q7 - J r, Q7, U	210	mg/kg dry	1000041	"		8015B/SOP385
		1112	, <', ~	٠	<u></u>		1		., 0
0810012 FINAL 10 24 08	1330			•	11	12/3/2			Page 2 of
						10/3/2	DS-		<i>0</i>

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond
Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08282A

Reported: 10/24/08 13:30

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	1 Units	В	atch	Prepared	Analyzed	Method	
Lab ID: 0810012-06			•					Soil .	Sampled:	10/06/08	11:20
Sample ID: VAS-1006-13'-06									bons by EPA	Method	8015B
Surrogate: Hexacosane	RE1	3.46		67 %	70-130	0% B8	8,10041	10/08/08	10/09/08		
Sample ID: VAS-1006-13'-06 % Solids		97	•	1	Cor %		Chemistr 3J0043		ers by APH/ 10/09/08 9		
Quality Control											
Analyte	Result		Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0041 - 3545 ASE/PFE - TI	PH - Extractable							Prepared:	10/08/08 A	nalyzed: 1	10/09/(
Blank (B8J0041-BLK1)		•		Extractable	Petrole	um Hydro	carbons b	y EPA Me	thod 8015B	- Quality	Contr
TPH as Diesel	ND		Ū.	5	mg/kg						
TPH as Motor Oil	ND		υ	20	wet						
Surrogate: Hexacosane		4.03			H	5.00		81	70-130		
LCS (B8J0041-BS1)											
IPH as Diesel	49.2				mg/kg wet	50.0		98	70-130		200
Surrogate: Hexacosane		4.77			Ħ	5.00		95	70-130	,	
Matrix Spike (B8J0041-MS1)		****	Source: 0810	1012-05RE1		3.00	*		70-130		
TPH as Diesel	Not Reported		Q10	52	mg/kg dry	52.1	17,900	NR	70-130		25
Surrogate: Hexacosane		4.07						40	go 130		
Matrix Spike Dup (B8J0041-MSD1)	, , <u>, , , , , , , , , , , , , , , , , </u>	4.07	Source: 0810	0111 GEDT21	.	5.21		78	70-130		
PH as Diesel	Not Reported		Q10	52 1	ng/kg Iry	52.1	17,900	. NR	70-130	0.1	25
urrogate: Hexacosane		4.28			"	5.21		82	70-130		
eatch B8J0043 - Solids, Dry Weight (Veight	Prep) - Solids, Dry	-		Conventional	Chemis	try Paran		-	10/08/08 An	•	
lank (B8J0043-BLK1)				· · · · · · · · · · · · · · · · · · ·		,				Zunni) C	. 51111 0
Solids	ND		U	1 9	6						
uplicate (B8J0043-DUP1) Solids	98	_	Source: 0810	012-03	4		98			0	20

mid 12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Fax:(510) 412-2302 Phone:(510) 412-2300

Project Manager: Thomas Dunkelman

Emergency Response Section Project Number: R08S96

75 Hawthorne Street

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

SDG: 08269G

Reported: 10/23/08 14:11

Sampling

Sample Results

Analyte	Reanalysis / Extract		Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809051-01							NAPL -	Sampled	: 09/23/08 10:30
Sample ID: VA-2 Aroclor 1016		ND	U	1,400	ug/kg	Polychlo B8I0158	rinated Biph 09/29/08		PA Method 8082 8082/SOP335
Aroclor 1221		ND	υ	2,900	n	Ħ	95	п	8082/SOP335
Aroclor 1232		ND	U	1,400	n	п	H	*	8082/SOP335
Aroclor 1242		ND	U	1,400	n	n	tt	π	8082/SOP335
Arocior 1248		ND	U	1,400	n	. #	11	n	8082/SOP335
Aroclor 1254	•	ND	υ	1,400	**	n	n	1)	8082/SOP335
Aroclor 1260		ND	U	1,400	н	11	Tt.	n	8082/SOP335
Aroclor 1262		ND	U	1,400	Ħ	. H	н	Ħ	8082/SOP335
Surrogate: Tetrachloro-m-xylene	RE1	1,150		80 %	65-135%	n	"	10/10/08	
Surrogate: Decachlorobiphenyl	RE1	1,170		82 %	80-130%	"	#	Ħ	

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone: (510) 412-2300 Fax: (510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08269G

Reported: 10/23/08 14:11

Quality Control

Analyte	Result	Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8I0158 - 3580A Waste Dilution	- PCBs						•	: 09/29/08	•	
Blank (B8I0158-BLK1)				Polyc	hlorinated	Biphenyls	by EPA ?	Method 8082	! - Quality	Contro
Aroclor 1016	ND	U	200	ug/kg						
Aroclor 1221	ND	U	400	ม						
Aroclor 1232	ND	U	200	n						
Aroclor 1242	ND	U	200	п						
Arocior 1248	ND	ŭ	200	п						
Aroclor 1254	ND	U	200	12			•			
Arocior 1260	ND	U ·	200	Ħ						
Aroclor 1262	ND	U	200	ft						
Surrogate: Tetrachloro-m-xylene		222 .		n,	200		111	65-135		
Surrogate: Decachlorobiphenyl		179		Ħ	200		89	80-130		
LCS (B8I0158-BS1)										—
Aroclor-1016	659		200	ug/kg	500		132	65-135		200
Aroclor-1260	590	···	200	#	500		118	65-135		200
Surrogate: Tetrachloro-m-xylene	;	238		B	200		119	65-135		
Surrogate: Decachlorobiphenyl	ı	165		11	200		83	80-130		
Matrix Spike (B8I0158-MS1)		Source: 0809	051-01							
Aroclor 1016	3,580		1,800	ug/kg	4550	ND	79	65-135		20
Aroclor-1260	4,410		1,800		4550	ND	97.	65-135		20
urrogate: Tetrachloro-m-xylene	12	270	•	н	1820		70	65-135	•	
urrogate: Decachlorobiphenyl	12	40		#	1820		68	80-130		
fatrix Spike Dup (B810158-MSD1)		Source: 0809	051-01					W-B		
roctor-1016	3,880		1,700 ι	ıg/kg	4170	ND	93	65-135	15	20
roclor-1260	4,230		1,700		4170	ND	101	65-135	4	20
urrogate: Tetrachloro-m-xylene	11	60		H	1670		70	65-135		÷
urrogate: Decachlorobiphenyl	13	00		"	1670		78	80-130		

mil 12/3/28

ANALYTICAL DATA REVIEW SUMMARY

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF
Laboratory: EPA Region 9 Laboratory	Lab Project Number: 0809039
Sampling Dates: 9/22/08	Sample Matrix: Water
Analytical Method: TPH as Diesel & MO EPA 8015M	Data Reviewer: Mindy Song

REVIEW AND APPROVAL:

Data Reviewer:	Mindy Song	Date:	12/3/08
Technical QA Reviewer:	Howard Edwards	Date:	
Project Manager:	Howard Edwards	Date:	
			

SAMPLE IDENTIFICATION:

Sample No.	Sample I.D.	Laboratory I.D.				
1	VA	0809039-01				
2	VAD	0809039-02				
3	VB	0809039-03				
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

ANALYTICAL DATA REVIEW SUMMARY

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA PACKAGE COMPLETENESS CHECKLIST:

Checklist - - -	Code: X Included: no problems * Included: problems noted in review O Not Included and/or Not Available NR Not Required
_	RS Provided As Re-submission
Case Narı	rative:
_	X Case Narrative present
Quality Co	ontrol Summary Package:
_	X Data Summary sheets
_	X Matrix Spike/Spike Duplicate Recoveries
_	X Matrix Spike/Spike Duplicate Recoveries X Laboratory Control Sample Recoveries X Method Blank Summaries
_	X Method Blank Summaries
	X Initial Calibration Data
	X Continuing Calibration Data
	X_ Surrogate Compound Recovery Summary
_	NR Internal Standard Area Summary
Sample a	nd Blank Data Package Section
•	X Chromatograms
-	X Chromatograms X Quantitation Reports
Raw QC E	Data Package Section
_	X Quantitation Reports for Standards, LCS, and MS/MSD
_	X List of Instrument Detection Limits X Chain-of-Custody Records
_	X Chain-of-Custody Records
	X Sample Preparation and Analysis Run Logs

ANALYTICAL DATA REVIEW SUMMARY

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA VALIDATION SUMMARY

The data were reviewed following procedures and limits specified in the EPA OSWER directive, *Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan and Data Validation Procedures* (EPA/540/G-90/004, OSWER Directive 9360.4-01, dated April 1990).

Indicate with a YES or NO whether each item is acceptable without qualification:

1	Holding Times	YES
2	Instrument Performance Criteria	YES
3	Initial Calibrations	YES
4	Continuing Calibrations	YES
5	Laboratory Control Sample	YES
6	Matrix Spike/Matrix Spike Duplicate	YES .
7	Blanks and Background Samples	YES
8	Surrogate Compounds	YES
9	Internal Standards	N/A
10	Duplicate Analyses	NO
11	Analyte Identification	YES
12	Analyte Quantitation	YES
13	Overall Assessment of Data	YES
14	Usability of Data	YES

Comments: Sample VAD is a field duplicate of sample VA and RPD between diesel results was greater than 25%. Detected diesel results were qualified as estimated (J) N/A: Not Applicable

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada			
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF			

1. HOLDING TIMES

X	_Acceptable	
-	Acceptable with	qualification
	Unacceptable	

Samples were extracted and analyzed within required holding times except as noted under Comments. In addition, no problems were identified with regard to sample preservation or custody unless specified. For those samples analyzed outside holding time requirements, the detected results have been qualified as estimated (J), and the nondetected results have been qualified either as estimated (UJ) or rejected (R) based on the reviewer's judgment.

Water Samples:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses: 7 days (from collection) to extraction; 40 days (from extraction) to analysis.

Soil or Other Matrices:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses:14 days (from collection) to extraction;40 days (from extraction) to

analysis.

Comments: Analytical holding time was met.

2. INSTRUMENT PERFORMANCE CRITERIA

Х	Raw data has been checked to verify that there is adequate resolution (>25%) between peaks of the standard compounds.
х	Raw data has been checked to verify that retention time windows are reported and that all standard compounds are within the windows.

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada			
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF			

3. INITIAL CALIBRATIONS

X	_Acceptable
	_Acceptable with qualification
	Unacceptable

Unless flagged below, a 5-point initial calibration was run. In addition, average Relative Response Factor (RRF), and percent relative Standard Deviation (%RSD) values were within control limits (%RSD <= 20). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the low calibration level was not detected, the non-detected results are qualified (UJ).

Comments: TPH as diesel and motor oil standards were used and %RSD values were within the control limit.

4. CONTINUING CALIBRATIONS

X	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, continuing calibrations were performed at the beginning and at the end of any group of samples and at least every 12 hours. In addition, Relative Response Factors (RRF), and Percent Difference (%D) values were within control limits (%D <= 15). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the %D is very high and indicates a severe loss of instrument sensitivity, the associated non-detected results may be qualified as estimated (UJ) or rejected (R) based on the professional judgment of the reviewer.

Comments: Diesel and motor oil standards were analyzed and percent difference values were within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada			
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF			

	5. LABORATORY CONTROL SAMPLE
XAcceptable Acceptable with Unacceptable	:
No Laboratory (Control Samples Analyzed
(bias) independent of matthe Sampling and Analysis	ole recoveries are used for a qualitative indication of accuracy atrix effects. LCS recovery limits should either be specified in sis Plan or can be established by the laboratory. For analytes ontrol limits, associated detected results are qualified as
Comments: LCS recover	ry was within the control limit.
6.	MATRIX SPIKE/MATRIX SPIKE DUPLICATE
X Acceptable Acceptable with Unacceptable	n qualification
	e/Matrix Spike Duplicates Analyzed
accuracy (bias) due to m qualitative indication of EPA/540/G-90/004. For a detected results are qua	spike duplicate recoveries are used for a qualitative indication of natrix effects. The RPD between the recoveries is used for a precision. Spike recovery limits of 80% to 120% are specified in analytes which exceeded these control limits, associated lified as estimated (J). At the discretion of the reviewer, other if justification can be provided.

Comments: Sample VB was used for MS/MSD analysis and the recoveries were within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada			
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF			

	7. BLANKS AND BACKGROUND SAMPLES
Х	
•	_Detection Limits Adjusted
The foll	owing blanks were analyzed:
X	_Method (preparation) Blanks
	_Field Blanks
	_Instrument Blanks
	_Rinsate Blanks Background Samples
	Background camples _VOA Trip Blanks
prepara sample detecte	ation (method) blanks were prepared for each batch of samples extracted. A ation blank was analyzed after every continuing calibration standard, prior to analysis unless noted below. Any compound detected in the sample and also d in any associated blank, must be qualified as non-detect (U) when the sample tration is less than 5x the blank concentration.
Comme	ents: No contamination was found in the method blank at reporting limit level.
	8. SURROGATE COMPOUNDS
X	_Acceptable
	_Acceptable with qualification
	_Unacceptable
	No surrogates analyzed
within t	ate compound recoveries for samples analyzed within a sample group must be he limits specified in the method. If the surrogate recovery is between 10% and er limit, the associated detected results are qualified as estimated (J) and the nor

the lower limit, the associated detected results are qualified as estimated (J) and the non-detected results are qualified as estimated (UJ). If the surrogate recovery is <10%, the associated detected results are qualified as estimated (J) and the non-detected results are rejected (R). If the surrogate recovery is above the upper limit, the associated detected results are qualified as estimated (J). Surrogate recoveries which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms. If there are no limits specified in the method, laboratory limits based on historical performance may be used at the discretion of the reviewer.

Comments: Surrogate recoveries were within the control limits.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada			
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF			

9.	IN.	TERI	NAL	ST	'ΑΝ	D/	۱RC	S
----	-----	------	-----	----	-----	----	-----	---

	_Acceptable
	_Acceptable with qualification
	Unacceptable
Х	No internal standards analyzed

Internal Standard area counts for samples analyzed within a sample group must be within the range of 50% to 200% of the internal standard area for the continuing calibration. If the internal standard area is between 10% and 50% of this value, the associated detected results are qualified as estimated (J) and the nondetected results are qualified as estimated (UJ). If the internal standard area is <10% of the calibration area, both the detected and nondetected results are rejected (R). If the internal standard area is >200% of the calibration area, the associated detected results are qualified as estimated (J). Internal standards which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms.

Comments:

10. DUPLICATE ANALYSES

ation
•

Calculate the relative Percent Difference (RPD) between the members of duplicate pairs using the equation indicated below. Qualify the results as estimated (J) for any analyte whose RPD exceeds that specified in the Sampling and Analysis Plan.

Г	R	DD = 200atu	o 4 Value 2	ነ 🗸 ላሰሰማ/	A second control of the second control of th	The state of the s
1		PD - Z(Valu	e i • value z	T Y 100.00		
-1		Value	A 4 Value 2			
ı	그는 [독일]는 얼마나는 그는 작품으로 하라보다	value	1 + Value 2			

Comments:

VA

<u>VAD</u>

RPD (%)

Diesel, ug/L

3,000,000

1,200,000

86,

*: RPD>25%. Detected diesel results in VA and VAD were qualified as estimated (J).

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

11. ANALYTE IDENTIFICATION

Verify that positive results have been confirmed on a dissimilar second column, that the sample chromatograms agree with the correct daily standard chromatograms, and that the retention time windows match.

Comments:

12. ANALYTE QUANTITATION

Confirm that analyte quantitation was performed correctly using the following formulas:

Purgeable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)

(external standard area)(volume of water purged, mL)

Purgeable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)

(external standard area)(weight of soil extracted, g)(fraction solids)

Extractable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(volume of sample extracted, mL)(injection volume, uL)

Extractable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(weight of sample extracted, g)(fraction solids)(injection volume, uL)

Comments:

Sample VAD

Diesel: (5798794574/2.389E6) (ug/mL) (10) (5mL/100mL) = 1213.6 ug/mL= 1,213,600 ug/L.

Lab reported 1,200,000 ug/L.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada				
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF				

13. OVERALL ASSESSMENT OF DATA

On the basis of this review, the following determination has been made with regard to the overall data usability for the specified level.

Х	_Acceptable _Acceptable with Qualification _Rejected
Accepte	ed data meet the minimum requirements for the following EPA data category: _ERS Screening
	_Non-definitive with 10 % Conformation by Definitive Methodology Definitive, Comprehensive Statistical Error Determination was performed.
X	Definitive, Comprehensive Statistical Error Determination was not performed.

Any qualifications to individual sample analysis results are detailed in the appropriate section above or appear under the comments section below. In cases where several QC criteria are out of specification, it may be appropriate to further qualify the data usability. The data reviewer must use professional judgment and express concerns and comments on the data validity for each specific data package.

Comments: Data as reported are valid.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada					
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF					

14. USABILITY OF DATA

A. These data are considered usable for the data use objectives stated in the <u>EPA</u>
<u>EMERGENCY RESPONSE SECTION AND SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM</u>
<u>QUALITY ASSURANCE SAMPLING PLAN FOR SOIL, WATER AND MISCELLANEOUS MATRIX SAMPLING,</u>
<u>ANACONDA MINE POND REMOVAL SUPPORT, YERINGTON, NEVADA, SEPTEMBER 24, 2008 (QASP).</u>

The following data use objectives were indicated in the QASP:

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVELS TO DETERMINE IF ADDITIONAL EXCAVATION IS NEEDED.

TO PROVIDE CONTAMINATE INFORMATION TO ASSIST IN THE USEPA DECISION REGARDING ON-SITE TREATMENT.

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVEL TO DETERMINE IF TREATMENT IS COMPLETED AND/OR PROGRESSING.

THE DATA ARE USABLE FOR THE ABOVE OBJECTIVES.

B. These data meet quality objectives stated in the QASP.

AS INDICATED IN SECTION 2.4 OF THE QASP, THE INVESTIGATION WILL GENERATE BOTH SCREENING AND DEFINITIVE DATA AND TABLE E OF THE QASP OUTLINES THE DATA QUALITY INDICATOR GOALS APPLICABLE TO THE DEFINITIVE DATA QUALITY LEVEL. THE DATA IN THIS PACKAGE MEET THESE REQUIREMENTS.

15. DOCUMENTATION OF LABORATORY CORRECTIVE ACTION

Problem: No problems requiring corrective action were found.

Resolution: Not required.

Attached are copies of all data summary sheets, with data qualifiers indicated, and a copy of the chain of custody for the samples.

United States Environmental Protection Agency Region 9 Laboratory

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

keiman .

Emergency Response Section

75 Hawthorne Street

San Francisco CA, 94105

SDG: 08267A

Reported: 10/10/08 11:22

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Sample Results

| Rennalysis / Qualifiers / Quantitation |

Analyte	Rennalysis / Extract		Qualifiers / Comments	Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809039-01				····			Water -	Sampled	: 09/22/08 12:30
Sample ID: VA			_		Extracta	able Petroleur	n Hydrocarl	ons by EF	A Method 8015B
TPH as Diesel	RE2	3,000,000	J	250,000	ug/L	B810149	09/25/08		8015B/SOP385
TPH as Motor Oil	RE3	ND	U	75,000	16	D	•	09/29/08	8015B/SOP385
Surrogate: Hexacosane	RE3	2,130		86 %	70-130%	'n	#		
Lab ID: 0809039-02							Water -	Sampled	09/22/08 12:40
Sample ID: VAD					Extracta	ıble Petroleon	n Hydrocarb	ons by EP	A Method 8015B
TPH as Dieset	REI	1,200,000	ナ	25,000	ug/L	B810125	09/23/08		8015B/SOP385
TPH as Motor Oil		ND	U	31,000	. 0	. "	rr	09/24/08	8015B/SOP385
Surrogate: Hexacosane		2,190		88 %	70-130%	"	"	n .	
Lab ID: 0809039-03					•		Water -	Sampled	09/22/08 12:35
Sample ID: VB					Extracta	ble Petroleun	ı Hydrocarb	ons by EP	A Method 8015B
TPH as Diesel	RE1	11,000		2,500	ug/L	B810149	09/25/08		8015B/SOP385
TPH as Motor Oil	REI	ND	U	10,000	ri .	31	H ,	**	8015B/SOP385
Surrogate: Hexacoxane	REI	2,080		84 %	70-130%	u	"	,,	•

m:///

United States Environmental Protection Agency Region 9 Laboratory

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08267A

Project Number: R08S96

75 Hawthorne Street

Reported: 10/10/08 11:22

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

Sampling

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B810125 - 3520B CLLE - TPH - Ex	ctractable	•						Prepared	: 09/23/08 A	nalyzed: 0	9/24/0
				Extractable	e Petrole	eum Hydro	carbons b	y EPA M	ethod 8015B	- Quality	Contra
Blank (B810125-BLK1)		•					•				
TPH as Diesel	ND		U		ug/L						
TPH as Motor Oil	ND		U	1,000	n .					 	
Surrogate: Hexacosane		241			"	250		96	70-130		
LCS (B810125-BS1)											·
TPH as Diesel	1,950			250	ug/L	2500		. 78	70-130		200
Surrogate: Hexacosane		243			n	250		97	70-130		
Batch B810149 - 3520B CLLE - TPH - Ex Blank (B810149-BLK1)	a actable			Extractable	e Petrole	um Hydro		•	: 09/25/08 A ethod 8015B	•	
TPH as Diesel	ND		U .	250	ug/L						
TPH as Diesel TPH as Motor Oil	ND ND		U .	250 1,000							· · · • • · · ·
		225				250		90	70-130	.	
TPH as Motor Oil		225			f f	250		90	70-130		
TPH as Motor Oil Surrogale: Hexacosane		225		1,000	f f	250 2500	•	90 90	70-130 70-130		200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1)	ND	225		1,000	#						200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogate: Hexacosane	ND			250	" ug/L	2500		90	70-130		200
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel	ND			250	ug/L	2500	10,800	90 96	70-130		290
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1)	ND 2,260			250 	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96	70-130 70-130		
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1) TPH as Diesel Surrogale: Hexacosane	ND 2,260	239		250 250 2039-03RE1 2,500	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96 103	70-130 70-130 70-130		
TPH as Motor Oil Surrogale: Hexacosane LCS (B810149-BS1) TPH as Diesel Surrogale: Hexacosane Matrix Spike (B810149-MS1) TPH as Diesel	ND 2,260	239	Source: 080	250 250 2039-03RE1 2,500	ug/L	2500 · · · · · · · · · · · · · · · · · ·	10,800	90 96 103 92	70-130 70-130 70-130	3	

ice c	ROJE	har be	ANC		<u>, ,</u>	<u> </u>	CHA	IN OF C	JSTO	DY R	ECC	RD					3	76 Hawthorns San Francisco, Celif
	Ano		ĭ	Por	وكا		<u>.</u>	NO.			1			//	//		F	
197) A 1772 1772	ture)			ر ار-	/p-,		1	OF		./	S		/	/ ,	[.]			
TE.	TIME	S MP	GRAB	160	SŤA	TION LOCATIO	žu	TAINE		(0)	g/ /		/,		[]	7		REMARKS
la	in in	5	Ų		ä.		<u>*************************************</u>	1 10		Z	1.	1	1	Ζ,	<u>/</u>	<u>,</u>	7	The second second
1	1230	-	X	-V.	<u> </u>		 		- (X)	-	L		ž.,		1.50	- 4	···	<u> </u>
	240		X	$-\frac{\sqrt{2}}{3}$				16	-K)	نبلة					ļ. , ,	Name : Vo		
eg ·	1135	 				- VB_	galen.							-		200	H	2 DAY MZ
-	<u> </u>			j	<u> </u>	sample II.		1 2 4	- 	ب	- 44				gape ¹	, <u></u>		
+						is per						1		-	· ·	• • • • •	,	- <u> </u>
1				v.	- (°	3 /00	M DWAGO	- 12 25 1 1	uar	17.7						- 1	7.5	
+		· · ·		······	·			A/A	11/2	3/4	-	المرز			نسبين	المستثنية سيتنز		
1	- 1	- 1		, , ,			- 1 50, 21		1	2 (S)	وَحَدِ ت			7	7	37.37		and for a second
1	-				*******		<u>. Andrewski je s</u>					- 3	7	<i>[</i>		tour		Carlie and Commercial
						<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-	4		b6	Hes	Description :	instead upon
7								 	1		-4	21.53%	+1		750	40 P	-	
					(2				\dashv		\		- 2,5	(A) (1)	\$ 500 1	042- 9/11/
7					-		7.		1-1	-			-			, <u></u> ,		
-						: 1	· · · · · · · · · · · · · · · · · · ·		1	+	•	7	-		-	Marin Marine	ا المعنائة	Company of the Company
(Siy	ieture) r		Ι.,		Time	Received by	(Signatura)		Relin	quishe	d by	(Sign	etire.	<i>i</i>		Date /	me	Received by: Islandure
1			131	1/22	08	100	FX	c. 86				7			سين أ		(40),/) <u>(2), </u>	E
Sign	u(ure)		1.00	Date	Time	Received by				quishe	₹				 -	Date / 7	ima	Received by: (Squarure)
<i>:</i>	سنتميز			ا جمعت	: 	7 15 25 25 2	;;;};;		 				بنهز	;- (اربب.			standard of Charles (Ice)
Sigl	atura)	·:		Date /	(ime	Received for	Laboratory	by:	4/23	Date /08			Fie	marks	No	custa	ly s	seals presenting
	Distrib	ution	t Origin	al Accon	pinles S	hipment; Copy (o Coordinak	r Field Files		<i>'</i>		-9	1 3	ici ya	ries.	.3.¢	. u	pon receipt @ la 123/0
						•		97 + 1 - 40.75					<u> </u>			· · · ·	1,21	1944
			:		•	•												9 3243

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada					
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF					
Laboratory: EPA Region 9 Laboratory	Lab Project Number: 0809059					
Sampling Dates: 9/27/08	Sample Matrix: Soil					
Analytical Method: TPH as Diesel & MO EPA 8015M	Data Reviewer: Mindy Song					

REVIEW AND APPROVAL:

Data Reviewer:	Mindy Song	-11	Date: _/-	2/3/08
Technical QA Reviewer: _	Howard Edwards		Date:	
Project Manager:	Howard Edwards		Date:	

SAMPLE IDENTIFICATION:

Sample No.	Sample I.D.	Laboratory I.D.
1	BTA-1	0809059-01
2	BTA-2	0809059-02
3	BTA-3	0809059-03
4	BTA-4	0809059-04
5	BTA-1002	0809059-05
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693,2009.01RF

DATA PACKAGE COMPLETENESS CHECKLIST:

Checklis	t Code:
Oncomic	X Included: no problems
•	* Included: problems noted in review
•	O Not Included and/or Not Available
-	NR Not Required
•	
-	RS Provided As Re-submission
Case Nar	rative:
	X Case Narrative present
Quality C	Control Summary Package:
	X Data Summary sheets
	* Matrix Spike/Spike Duplicate Recoveries
•	X Laboratory Control Sample Recoveries
•	X Method Blank Summaries
•	X Initial Calibration Data
•	X Continuing Calibration Data
•	* Surrogate Compound Recovery Summary
,	NR Internal Standard Area Summary
Sample a	and Blank Data Package Section
·	X Chromatograms
•	X Quantitation Reports
Raw QC	Data Package Section
	X Quantitation Reports for Standards, LCS, and MS/MSD
	X List of Instrument Detection Limits
•	X Chain-of-Custody Records
	X Sample Preparation and Analysis Run Logs

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA VALIDATION SUMMARY

The data were reviewed following procedures and limits specified in the EPA OSWER directive, Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan and Data Validation Procedures (EPA/540/G-90/004, OSWER Directive 9360.4-01, dated April 1990).

Indicate with a YES or NO whether each item is acceptable without qualification:

1	Holding Times	YES
2	Instrument Performance Criteria	YES
3	Initial Calibrations	YES
4	Continuing Calibrations	YES
5	Laboratory Control Sample	YES
6	Matrix Spike/Matrix Spike Duplicate	YES
7	Blanks and Background Samples	YES
8	Surrogate Compounds	NO
9	Internal Standards	· N/A
10	Duplicate Analyses	YES
11	Analyte Identification	YES
12	Analyte Quantitation	YES
13	Overall Assessment of Data	YES
14	Usability of Data	YES

Comments: Surrogate recoveries were within the control limits except sample BTA-3 (67%) and BTA-4 (59%). Detected diesel results in BTA-3 and BTA-4 were qualified as estimated (J) N/A: Not Applicable

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

1. HOLDING TIMES

X	_Acceptable
	_Acceptable with qualification
	Unacceptable

Samples were extracted and analyzed within required holding times except as noted under Comments. In addition, no problems were identified with regard to sample preservation or custody unless specified. For those samples analyzed outside holding time requirements, the detected results have been qualified as estimated (J), and the nondetected results have been qualified either as estimated (UJ) or rejected (R) based on the reviewer's judgment.

Water Samples:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses: 7 days (from collection) to extraction; 40 days (from extraction) to analysis.

Soil or Other Matrices:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses:14 days (from collection) to extraction;40 days (from extraction) to

analysis.

Comments: Analytical holding time was met.

2. INSTRUMENT PERFORMANCE CRITERIA

х	Raw data has been checked to verify that there is adequate resolution (>25%) between peaks of the standard compounds.
х	Raw data has been checked to verify that retention time windows are reported and that all standard compounds are within the windows.

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

3. INITIAL CALIBRATIONS

X	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, a 5-point initial calibration was run. In addition, average Relative Response Factor (RRF), and percent relative Standard Deviation (%RSD) values were within control limits (%RSD <= 20). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the low calibration level was not detected, the non-detected results are qualified (UJ).

Comments: TPH as diesel and motor oil standards were used and %RSD values were within the control limit.

4. CONTINUING CALIBRATIONS

X	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, continuing calibrations were performed at the beginning and at the end of any group of samples and at least every 12 hours. In addition, Relative Response Factors (RRF), and Percent Difference (%D) values were within control limits (%D <= 15). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the %D is very high and indicates a severe loss of instrument sensitivity, the associated non-detected results may be qualified as estimated (UJ) or rejected (R) based on the professional judgment of the reviewer.

Comments: Diesel and motor oil standards were analyzed and percent difference values were within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

	5. LABORATORY CONTROL SAMPLE
<u>x</u>	Acceptable Acceptable with qualification Unacceptable No Laboratory Control Samples Analyzed
(bias) i the Sai which	Intory control sample recoveries are used for a qualitative indication of accuracy independent of matrix effects. LCS recovery limits should either be specified in impling and Analysis Plan or can be established by the laboratory. For analytes exceeded these control limits, associated detected results are qualified as ted (J).
Comm	ents: LCS recovery was within the control limit.
	6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE
X	Acceptable Acceptable with qualification Unacceptable No Matrix Spike/Matrix Spike Duplicates Analyzed

Matrix spike and matrix spike duplicate recoveries are used for a qualitative indication of accuracy (bias) due to matrix effects. The RPD between the recoveries is used for a qualitative indication of precision. Spike recovery limits of 80% to 120% are specified in EPA/540/G-90/004. For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). At the discretion of the reviewer, other limits may be used only if justification can be provided.

Comments: Sample BTA-3 was used for MS/MSD analysis and the recoveries were outside of control limit. Qualification was not necessary because the amount of diesel present in the parent sample was greater than four times amount spiked.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

7. BLANKS AND BACKGROUND SAMPLES
XAcceptable Detection Limits Adjusted
The following blanks were analyzed: XMethod (preparation) BlanksField BlanksInstrument BlanksRinsate BlanksBackground SamplesVOA Trip Blanks
Preparation (method) blanks were prepared for each batch of samples extracted. A preparation blank was analyzed after every continuing calibration standard, prior to sample analysis unless noted below. Any compound detected in the sample and also detected in any associated blank, must be qualified as non-detect (U) when the sample concentration is less than 5x the blank concentration.
Comments: No contamination was found in the method blank at reporting limit level.
8. SURROGATE COMPOUNDS
AcceptableAcceptable with qualificationUnacceptableNo surrogates analyzed

Surrogate compound recoveries for samples analyzed within a sample group must be within the limits specified in the method. If the surrogate recovery is between 10% and the lower limit, the associated detected results are qualified as estimated (J) and the non-detected results are qualified as estimated (UJ). If the surrogate recovery is <10%, the associated detected results are qualified as estimated (J) and the non-detected results are rejected (R). If the surrogate recovery is above the upper limit, the associated detected results are qualified as estimated (J). Surrogate recoveries which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms. If there are no limits specified in the method, laboratory limits based on historical performance may be used at the discretion of the reviewer.

Comments: Surrogate recoveries were within the control limits except sample BTA-3 (67%) and BTA-4 (59%). Detected diesel results in BTA-3 and BTA-4 were qualified as estimated (J)

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada		
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF		

9 INTERNAL STANDARDS	Q	IN!	TERN	JΔI	STA	NΠ	ΔR	n
----------------------	---	-----	------	-----	-----	----	----	---

	Acceptable
	Acceptable with qualification
	Unacceptable
X	No internal standards analyzed

Internal Standard area counts for samples analyzed within a sample group must be within the range of 50% to 200% of the internal standard area for the continuing calibration. If the internal standard area is between 10% and 50% of this value, the associated detected results are qualified as estimated (J) and the nondetected results are qualified as estimated (UJ). If the internal standard area is <10% of the calibration area, both the detected and nondetected results are rejected (R). If the internal standard area is >200% of the calibration area, the associated detected results are qualified as estimated (J). Internal standards which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms.

Comments:

10. DUPLICATE ANALYSES

<u> X </u>	_Acceptable
	_Acceptable with qualification
	_Unacceptable
	No Duplicates Analyzed
Type of X	duplicates analyzed: _Field Duplicates _Laboratory Duplicates

Calculate the relative Percent Difference (RPD) between the members of duplicate pairs using the equation indicated below. Qualify the results as estimated (J) for any analyte whose RPD exceeds that specified in the Sampling and Analysis Plan.

Comments:

BTA-2

BTA-1002

RPD (%)

Diesel, mg/kg

3,200

3.500

9

BTA-1002 is a field duplicate of BTA-2 and RPD was within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

11. ANALYTE IDENTIFICATION

Verify that positive results have been confirmed on a dissimilar second column, that the sample chromatograms agree with the correct daily standard chromatograms, and that the retention time windows match.

Comments:

12. ANALYTE QUANTITATION

Confirm that analyte quantitation was performed correctly using the following formulas:

Purgeable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)

(external standard area)(volume of water purged, mL)

Purgeable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)

(external standard area)(weight of soil extracted, g)(fraction solids)

Extractable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(volume of sample extracted, mL)(injection volume, uL)

Extractable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(weight of sample extracted, g)(fraction solids)(injection volume, uL)

Comments: Sample BTA-1

Diesel: (3416019196/2.759E+6) (ug/mL) (2) (3mL/4.99g) (100/93) = 1600.8 ug/g= 1601 mg/kg.

Lab reported 1600 mg/kg.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada	
	Project Number: 002693.2009.01RF	

13. OVERALL ASSESSMENT OF DATA

On the basis of this review, the following determination has been made with regard to the overall data usability for the specified level.

X	_Acceptable _Acceptable with Qualification _Rejected
Accepte	ed data meet the minimum requirements for the following EPA data category: ERS Screening
	Non-definitive with 10 % Conformation by Definitive Methodology
Х	_Definitive, Comprehensive Statistical Error Determination was performed. _Definitive, Comprehensive Statistical Error Determination was not performed.

Any qualifications to individual sample analysis results are detailed in the appropriate section above or appear under the comments section below. In cases where several QC criteria are out of specification, it may be appropriate to further qualify the data usability. The data reviewer must use professional judgment and express concerns and comments on the data validity for each specific data package.

Comments: Data as reported are valid.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada	
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF	

14. USABILITY OF DATA

A. These data are considered usable for the data use objectives stated in the <u>EPA</u>
<u>EMERGENCY RESPONSE SECTION AND SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM</u>
<u>QUALITY ASSURANCE SAMPLING PLAN FOR SOIL, WATER AND MISCELLANEOUS MATRIX SAMPLING,</u>
ANACONDA MINE POND REMOVAL SUPPORT, YERINGTON, NEVADA, SEPTEMBER 24, 2008 (QASP).

The following data use objectives were indicated in the QASP:

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVELS TO DETERMINE IF ADDITIONAL EXCAVATION IS NEEDED.

TO PROVIDE CONTAMINATE INFORMATION TO ASSIST IN THE USEPA DECISION REGARDING ON-SITE TREATMENT.

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVEL TO DETERMINE IF TREATMENT IS COMPLETED AND/OR PROGRESSING.

THE DATA ARE USABLE FOR THE ABOVE OBJECTIVES.

B. These data meet quality objectives stated in the QASP.

AS INDICATED IN SECTION 2.4 OF THE QASP, THE INVESTIGATION WILL GENERATE BOTH SCREENING AND DEFINITIVE DATA AND TABLE E OF THE QASP OUTLINES THE DATA QUALITY INDICATOR GOALS APPLICABLE TO THE DEFINITIVE DATA QUALITY LEVEL. THE DATA IN THIS PACKAGE MEET THESE REQUIREMENTS.

15. DOCUMENTATION OF LABORATORY CORRECTIVE ACTION

Problem: No problems requiring corrective action were found.

Resolution: Not required.

Attached are copies of all data summary sheets, with data qualifiers indicated, and a copy of the chain of custody for the samples.

United States Environmental Protection Agency Region 9 Laboratory

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08273B

Project Number: R08S96

75 Hawthorne Street

Reported: 10/16/08 09:48

Project: Anaconda Mine Old Raffinate Pond

Sampling

San Francisco CA, 94105

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809059-01							Soil -	Sampled	: 09/27/08 13:2
Sample ID: BTA-1 TPH as Diesel	RE1	1,600		65	Extracta mg/kg dry	ible Petroleun B8J0018	n Hydrocarl 10/03/08	ons by EF 10/07/08	A Method 80151 8015B/SOP385
TPH as Motor Oil	RE1	ND	U	260	я	n	10	н	8015B/SOP385
Surrogate: Hexacosane	RE1	24.4		75 %	70-130%	"	u	"	
Sample ID: BTA-1 : % Solids		93		1	Convent	ional Chemist B8J0029			IA/EPA Method % calculation
Lab ID: 0809059-02							Soil -	Sampled	09/27/08 13:3
Sample ID: BTA-2 TPH as Diesel	RE1	3,200		63	Extracta mg/kg dry	ble Petroleum B8J0018			A Method 80151 8015B/SOP385
TPH as Motor Oil	RE1	ND	U	250	n	n		17	8015B/SOP385
Surrogate: Hexacosane	REI	26.0		82 %	70-130%	"	"	n	
Sample ID: BTA-2 % Solids		95		1 ·	Conventi %	onal Chemisti B8J0029	ry Paramete 10/06/08	ers by APF 10/07/08	IA/EPA Method % calculation
Lab ID: 0809059-03	-						Soil -	Sampled:	09/27/08 13:4
Sample ID: BTA-3 FPH as Diesei	RB1	4,000	J, Q7 ゴ	160	Extracta mg/kg dry	ble Petroleum B8J0018			A Method 80151 8015B/SOP385
TPH as Motor Oil	RB1	ND	U, J, Q7	640	n	н,	ŧŧ	rs	8015B/SOP385
Surrogate: Hexacosane	RE1	21.6		67 %	70-130%	"	"	"	
Sample ID: BTA-3 6 Solids		94		1	Conventi %	onal Chemistr B8J0029			A/EPA Method % calculation
ab ID: 0809059-04							Soil -	Sampled:	09/27/08 13:50
ample ID: BTA-4 PH as Diesel	RE1	. 5,000	J, Q7 J	160	Extractal mg/kg dry	ble Petroleum B8J0018			A Method 8015B 8015B/SOP385
PH as Motor Oil	REi	ND	Ü, J, Q7	650	п	tt	11	H	8015B/SOP385
urrogate: Hexacosane	REI	19.1		59 %	70-130%	n	n	11	
ample ID: BTA-4 6 Solids	,	93		1	Conventio	nial Chemistr B8J0029			A/EPA Methods % calculation
ab ID: 0809059-05	1	-					Soil - S	Sampled:	09/27/08 13:35
ample ID: BTA-1002 PH as Diesel	RE1	3,500		64	Extractal mg/kg dry	ole Petroleum B8J0018			A Method 80151 8015B/SOP385
PH as Motor Oil	RE1	ND	U	250	п	II .	**	tf	8015B/SOP385
urrogate: Hexacosane	RE1	24.3	<u> </u>	76%	70-130%	11	"	"	
ample ID: BTA-1002 Solids	•	94		1	Convention	nal Chemistr B8J0029	y Paramete 10/06/08	rs by APH 10/07/08	A/EPA Methods % calculation

mil 12/3/08

United States Environmental Protection Agency Region 9 Laboratory

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street

San Francisco CA, 94105

SDG: 08273B

Reported: 10/16/08 09:48

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitation Limit	n Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0018 - 3545 ASE/PFE - TP	H - Extractable			Extracta	ble Petrole	um Hydro		-	: 10/03/08 A ethod 8015B	-	
Blank (B8J0018-BLK1)						,		,		•	
TPH as Diesel	ND		U		5 mg/kg wet						
TPH as Motor Oil	ND		U		20 "	···					
Surrogate: Hexacosane		4,43			"	5.00		89	70-130		
LCS (B8J0018-BS1)										•	
TPH as Diesel	44.4		· · · · · · · · · · · · · · · · · · ·		5 mg/kg wet	50.0		89	70-130	<u> </u>	200
Surrogate: Hexacosane		4.64			Ħ	5.00		93	70-130		
Matrix Spike (B8J0018-MS1)			Source: 080	9059-02RE1							
TPH as Diesel	Not Reported		C2, Q10	11.00 00000	63 mg/kg dry	315	3,160	NR	70-130		25
Surrogate: Hexacosane		23.8	·		"	<i>31.5</i> .		76	70-130	· _	
Matrix Spike Dup (B8J0018-MSD1)			Source: 080	9059-02RE1	-	÷	***				
TPH as Diesel	Not Reported		C2, Q10		64 mg/kg dry	319 ·	3,160	NR	70-130	2	25
•	٠	•									
Surrogate: Hexacosane		24.2			<i>,,</i>	31.9	-	76	70-130		
Batch B8J0029 - Solids, Dry Weight (F Weight	rep) - Solids, Dry			Conventi	onal Chemi	stry Paran			10/06/08 Ar A Methods -		
Blank (B8J0029-BLK1)								•			
% Solids	ND		U		1 %						
Duplicate (B8J0029-DUP1)			Source: 080	9059-01							•
% Solids	93				1 %		93			0	20

12/3/08

ENVIRONMENTAL PROTECTION AGENCY RECORD Region 34 aboratory		1337 S. 46th St., Bidg. 201 Richmond, CA 94204-4538
PROLING PROJECT NAME		
000	MONTH REMARKS	 · <u>(</u>
DATE TRUE WATERY SO SO SAMPLE DENTIFICATION)
N S		
874 2		
		1
VV BT		
		747
	The Mark the	10.1A
		e a major (er ama a maj, maj, maj, major), a 'uj, demara a' teola, di januara
Reinquistico F. (Signature) Date: Time Reconved by: (Signature) Rein	Relinquished by (Signature) Date Time Receive	Received by: (Signature)
10100 929081250 -		
Relinquished by: (Signature) Date Time Received by: (Signature) Boil	Rolling sished bys (Signature). Date / Hinte Recaive	Received by: (Signature)
Received for Laboratory by: (Signature) Date (Titule Temp. Seals Intact (YIN)) Cor	Conditions / Remarks.	
Distribution: Original Accompanies Shipment, Copy to Coordinator Field Files		

in.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF
Laboratory: EPA Region 9 Laboratory	Lab Project Number: 0809060
Sampling Dates: 9/25/08 & 9/26/08	Sample Matrix: Soil
Analytical Method: TPH as Diesel & MO EPA 8015M	Data Reviewer: Mindy Song

REVIEW AND APPROVAL:

Data Reviewer:	Mindy Song	Date: <u>/2/3/08</u>
Technical QA Reviewer: _	Howard Edwards	Date:
Project Manager:	Howard Edwards	Date:
- -		

SAMPLE IDENTIFICATION:

Sample No.	Sample I.D.	Laboratory I.D.
1	23-D	0809060-01
2	23-DD	0809060-02
3	19-SW	0809060-03
4	25-F	0809060-04
5	29-TP	0809060-05
6	25-E	0809060-06
7	22-A	0809060-07
8	22-B	0809060-08
9	17-NW	0809060-09
10	19-EW	0809060-10
11	25-ED	0809060-11
12	23-TP	0809060-12
13	23-C	0809060-13
14		
15		
16		
17		
18		
19		
20		

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA PACKAGE COMPLETENESS CHECKLIST:

Checklis	t Code:
	X Included: no problems
'	* Included: problems noted in review
,	O Not Included and/or Not Available
,	NR Not Required
	RS Provided As Re-submission
Case Nai	rrative:
•	X Case Narrative present
Quality C	Control Summary Package:
	X Data Summary sheets
	* Matrix Spike/Spike Duplicate Recoveries
	X Laboratory Control Sample Recoveries
	X Method Blank Summaries
	X Initial Calibration Data
	X Continuing Calibration Data
	* Surrogate Compound Recovery Summary
	NR Internal Standard Area Summary
Sample a	and Blank Data Package Section
	X Chromatograms
	X Quantitation Reports
Raw QC	Data Package Section
	X Quantitation Reports for Standards, LCS, and MS/MSD
	X List of Instrument Detection Limits
	X Chain-of-Custody Records
·	X Sample Preparation and Analysis Run Logs

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA VALIDATION SUMMARY

The data were reviewed following procedures and limits specified in the EPA OSWER directive, *Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan and Data Validation Procedures* (EPA/540/G-90/004, OSWER Directive 9360.4-01, dated April 1990).

Indicate with a YES or NO whether each item is acceptable without qualification:

1	Holding Times	YES
2	Instrument Performance Criteria	YES
3	Initial Calibrations	YES
4	Continuing Calibrations	YES
5	Laboratory Control Sample	YES
6	Matrix Spike/Matrix Spike Duplicate	YES
7	Blanks and Background Samples	YES
8.	Surrogate Compounds	NO
9	Internal Standards	N/A
10	Duplicate Analyses	NO
11	Analyte Identification	YES
12	Analyte Quantitation	YES
13	Overall Assessment of Data	YES
14	Usability of Data	YES

Comments: Surrogate recoveries were within the control limits except sample 17-NW (61%) and 23-C (61%). Detected diesel results in 17-NW and 23-C were qualified as estimated (J) Sample 23-DD is a field duplicate of sample 23-D and RPD was greater than 35% in duplicate analysis. Detected diesel results in 23-D and 23-DD were qualified as estimated (J). N/A: Not Applicable

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

1. HOLDING TIMES

X	Acceptable
	Acceptable with qualification
	Unacceptable

Samples were extracted and analyzed within required holding times except as noted under Comments. In addition, no problems were identified with regard to sample preservation or custody unless specified. For those samples analyzed outside holding time requirements, the detected results have been qualified as estimated (J), and the nondetected results have been qualified either as estimated (UJ) or rejected (R) based on the reviewer's judgment.

Water Samples:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses: 7 days (from collection) to extraction; 40 days (from extraction) to analysis.

Soil or Other Matrices:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses:14 days (from collection) to extraction;40 days (from extraction) to analysis.

Comments: Analytical holding time was met.

2. INSTRUMENT PERFORMANCE CRITERIA

•	х	Raw data has been checked to verify that there is adequate resolution (>25%) between peaks of the standard compounds.
	х	Raw data has been checked to verify that retention time windows are reported and that all standard compounds are within the windows.

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

3. INITIAL CALIBRATIONS

X	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, a 5-point initial calibration was run. In addition, average Relative Response Factor (RRF), and percent relative Standard Deviation (%RSD) values were within control limits (%RSD <= 20). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the low calibration level was not detected, the non-detected results are qualified (UJ).

Comments: TPH as diesel and motor oil standards were used and %RSD values were within the control limit.

4. CONTINUING CALIBRATIONS

<u>X</u>	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, continuing calibrations were performed at the beginning and at the end of any group of samples and at least every 12 hours. In addition, Relative Response Factors (RRF), and Percent Difference (%D) values were within control limits (%D <= 15). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the %D is very high and indicates a severe loss of instrument sensitivity, the associated non-detected results may be qualified as estimated (UJ) or rejected (R) based on the professional judgment of the reviewer.

Comments: Diesel and motor oil standards were analyzed and percent difference values were within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

5. LABORATORY CONTROL SAMPLE					
XAcceptableAcceptable with qualificationUnacceptableNo Laboratory Control Samples Analyzed					
Laboratory control sample recoveries are used for a qualitative indication of accuracy (bias) independent of matrix effects. LCS recovery limits should either be specified in the Sampling and Analysis Plan or can be established by the laboratory. For analytes which exceeded these control limits, associated detected results are qualified as estimated (J).					
Comments: LCS recovery was within the control limit.					
6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE					
X Acceptable					
Acceptable with qualification					
Unacceptable					
No Matrix Spike/Matrix Spike Duplicates Analyzed					

Matrix spike and matrix spike duplicate recoveries are used for a qualitative indication of accuracy (bias) due to matrix effects. The RPD between the recoveries is used for a qualitative indication of precision. Spike recovery limits of 80% to 120% are specified in EPA/540/G-90/004. For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). At the discretion of the reviewer, other limits may be used only if justification can be provided.

Comments: Sample 22-B was used for MS/MSD analysis and the recoveries were outside of control limit. Qualification was not necessary because the amount of diesel present in the parent sample was greater than four times amount spiked.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

7. BLANKS AND BACKGROUND SAMPLES
X Acceptable Detection Limits Adjusted
The following blanks were analyzed: X Method (preparation) Blanks Field Blanks Instrument Blanks Rinsate Blanks Background Samples VOA Trip Blanks
Preparation (method) blanks were prepared for each batch of samples extracted. A preparation blank was analyzed after every continuing calibration standard, prior to sample analysis unless noted below. Any compound detected in the sample and also detected in any associated blank, must be qualified as non-detect (U) when the sample concentration is less than 5x the blank concentration.
Comments: No contamination was found in the method blank at reporting limit level.
8. SURROGATE COMPOUNDS
AcceptableAcceptable with qualificationUnacceptableNo surrogates analyzed
Surrogate compound recoveries for samples analyzed within a sample group must be within the limits specified in the method. If the surrogate recovery is between 10% and the lower limit, the associated detected results are qualified as estimated (J) and the nor

Surrogate compound recoveries for samples analyzed within a sample group must be within the limits specified in the method. If the surrogate recovery is between 10% and the lower limit, the associated detected results are qualified as estimated (J) and the non-detected results are qualified as estimated (UJ). If the surrogate recovery is <10%, the associated detected results are qualified as estimated (J) and the non-detected results are rejected (R). If the surrogate recovery is above the upper limit, the associated detected results are qualified as estimated (J). Surrogate recoveries which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms. If there are no limits specified in the method, laboratory limits based on historical performance may be used at the discretion of the reviewer.

Comments: Surrogate recoveries were within the control limits except sample 17-NW (61%) and 23-C (61%). Detected diesel results in 17-NW and 23-C were qualified as estimated (J)

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

q	IN.	TER	·N	ΔΙ	ST	Δ١	חו	ΔR	יח	3
77.	114	8 L_I3		~_		~ 1	чL.	~ I\		

	_Acceptable _Acceptable with qualification
	Unacceptable
X	No internal standards analyzed

Internal Standard area counts for samples analyzed within a sample group must be within the range of 50% to 200% of the internal standard area for the continuing calibration. If the internal standard area is between 10% and 50% of this value, the associated detected results are qualified as estimated (J) and the nondetected results are qualified as estimated (UJ). If the internal standard area is <10% of the calibration area, both the detected and nondetected results are rejected (R). If the internal standard area is >200% of the calibration area, the associated detected results are qualified as estimated (J). Internal standards which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms.

Comments:

10. DUPLICATE ANALYSES

	_Acceptable
<u> </u>	Acceptable with qualification
	Unacceptable
	No Duplicates Analyzed
Type of	duplicates analyzed:
X	Field Duplicates
	Laboratory Duplicates

Calculate the relative Percent Difference (RPD) between the members of duplicate pairs using the equation indicated below. Qualify the results as estimated (J) for any analyte whose RPD exceeds that specified in the Sampling and Analysis Plan.

RPD =	2(Value 1 - Value 2) x 100%	
	Value 1 + Value 2	

Comments: Diesel, mg/kg 23-D

23-DD

RPD (%)

*: RPD>35%

Detected diesel results in 23-D and 23-DD were qualified as estimated (J).

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

11. ANALYTE IDENTIFICATION

Verify that positive results have been confirmed on a dissimilar second column, that the sample chromatograms agree with the correct daily standard chromatograms, and that the retention time windows match.

Comments:

12. ANALYTE QUANTITATION

Confirm that analyte quantitation was performed correctly using the following formulas:

Purgeable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)

(external standard area)(volume of water purged, mL)

Purgeable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)

(external standard area)(weight of soil extracted, g)(fraction solids)

Extractable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(volume of sample extracted, mL)(injection volume, uL)

Extractable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(weight of sample extracted, g)(fraction solids)(injection volume, uL)

Comments: Sample 19-SW

Diesel: (1607582647/2.759E+6) (ug/mL) (10) (3mL/29.9g) (100/96) = 609 ug/g= 609 mg/kg.

Lab reported 610 mg/kg.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

13. OVERALL ASSESSMENT OF DATA

On the basis of this review, the following determination has been made with regard to the overall data usability for the specified level.

X	_Acceptable _Acceptable with Qualification _Rejected
Accepte	ed data meet the minimum requirements for the following EPA data category: ERS Screening
	Non-definitive with 10 % Conformation by Definitive Methodology
	Definitive, Comprehensive Statistical Error Determination was performed.
Х	Definitive, Comprehensive Statistical Error Determination was not performed.

Any qualifications to individual sample analysis results are detailed in the appropriate section above or appear under the comments section below. In cases where several QC criteria are out of specification, it may be appropriate to further qualify the data usability. The data reviewer must use professional judgment and express concerns and comments on the data validity for each specific data package.

Comments: Data as reported are valid.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

14. USABILITY OF DATA

A. These data are considered usable for the data use objectives stated in the <u>EPA</u>
<u>EMERGENCY RESPONSE SECTION AND SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM</u>
<u>QUALITY ASSURANCE SAMPLING PLAN FOR SOIL, WATER AND MISCELLANEOUS MATRIX SAMPLING,</u>
<u>ANACONDA MINE POND REMOVAL SUPPORT, YERINGTON, NEVADA, SEPTEMBER 24, 2008 (QASP).</u>

The following data use objectives were indicated in the QASP:

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVELS TO DETERMINE IF ADDITIONAL EXCAVATION IS NEEDED.

TO PROVIDE CONTAMINATE INFORMATION TO ASSIST IN THE USEPA DECISION REGARDING ON-SITE TREATMENT.

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVEL TO DETERMINE IF TREATMENT IS COMPLETED AND/OR PROGRESSING.

THE DATA ARE USABLE FOR THE ABOVE OBJECTIVES.

B. These data meet quality objectives stated in the QASP.

AS INDICATED IN SECTION 2.4 OF THE QASP, THE INVESTIGATION WILL GENERATE BOTH SCREENING AND DEFINITIVE DATA AND TABLE E OF THE QASP OUTLINES THE DATA QUALITY INDICATOR GOALS APPLICABLE TO THE DEFINITIVE DATA QUALITY LEVEL. THE DATA IN THIS PACKAGE MEET THESE REQUIREMENTS.

15. DOCUMENTATION OF LABORATORY CORRECTIVE ACTION

Problem: No problems requiring corrective action were found.

Resolution: Not required.

Attached are copies of all data summary sheets, with data qualifiers indicated, and a copy of the chain of custody for the samples.

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

Project Number: R08S96

75 Hawthorne Street

SDG: 08273C

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

Reported: 10/23/08 14:55

Sampling

Sam	nle	Res	ults

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809060-01							Soil -	· Sampled	: 09/26/08 14:
Sample ID: 23-D					Extracta	ble Petroleu			A Method 801:
TPH as Diesel		60		5.5	mg/kg dry	B8J0004	10/01/08		8015B/SOP38:
TPH as Motor Oil		ND	U	22	ft.	н	tt	. "	. 8015B/SOP385
Surrogate: Hexacosane		4.47	•	81 %	70-130%	п	Ħ	u	
Sample ID: 23-D					Conventi	ional Chemis	try Paramet	ers by API	HA/EPA Metho
% Solids		91		1	%	B8J0057	10/13/08	10/14/08	% calculation
Lab ID: 0809060-02							Soil -	Sampled	: 09/26/08 14::
Sample ID: 23-DD					Extracta	ble Petroleur	n Hydrocarl	ons by EP	A Method 8015
TPH as Diesel		19	J	6	mg/kg dry	B8J0004	10/01/08	10/08/08	8015B/SOP385
TPH as Motor Oil		ND	U	24	19	и	Ħ	н	8015B/SOP385
Surrogate: Hexacosane		4.28		. 70 %	70-130%	"	"	"	•
Sample ID: 23-DD			•		Conventi		try Paramete	ers by API	IA/EPA Method
% Solids		83		1	%	B8J0057			% calculation
Lab ID: 0809060-03							Soil -	Sampled:	09/26/08 09:2
Sample ID: 19-SW					Extractal	ble Petroleun			A Method 8015
PH as Diesel	RE1	-610		52	mg/kg dry	B8J0004	10/01/08		8015B/SOP385
TPH as Motor Oil		ND	U	21	ų	11	Ħ	10/09/08	8015B/SOP385
urrogate: Hexacosane		3.83		73 %	70-130%	. "	"	n	
lample ID: 19-SW				•	Convention		ry Paramete	ers by APH	A/EPA Method % calculation
6 Solids Lab ID: 0809060-04		96		1	76	B8J0057			
									09/26/08 14:2
ample ID: 25-F				- 4					A Method 8015
PH as Diesel		140	**	5.4	mg/kg dry	B8J0004	10/01/08		8015B/SOP385 8015B/SOP385
PH as Motor Oil	. •	ND	U ·	22					
urrogate: Hexacosane		4.69		86 %	70-130%	"	. #	"	
ample ID: 25-F 6 Solids		93		1	Convention	mal Chemist B8J0057			A/EPA Method % calculation
ab ID: 0809060-05							Soil -	Sampled:	09/25/08 09:3
ample ID: 29-TP					Kytraciah	le Petroleum	Hydrocarb	ons by EP	A Method 8015
PH as Diesel		4.6	CI, J	5.6	mg/kg dry	B8J0004	10/01/08	10/08/08	8015B/SOP385
PH as Motor Oil		ND		22	tt		ŧt	92	8015B/SOP385
urrogate: Hexacosane		4.97	•	88 %	70-130%	ø	"	<i>i</i>	<u> </u>
ample ID: 29-TP Solids	-	89		. 1	Conventio	nal Chemisti B8J0057			A/EPA Method % calculation
ab ID: 0809060-06		07		<u> </u>					09/26/08 14:2
imple ID: 25-E					Extractch	la Patroloum		-	Method 80151
PH as Diesel .		85		5.3	mg/kg dry	B8J0004			8015B/SOP385
•		ND							8015B/SOP385

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

Project Number: R08S96

75 Hawthorne Street

Report

SDG: 08273C Reported: 10/23/08 14:55

Dustast Angen

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

Sampling

Samp.	le F	tesu	Its
-------	------	------	-----

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	ed Method
Lab ID: 0809060-06							Soil -	Sampled	l: 09/26/08 14:2:
Sample ID: 25-E Surrogate: Hexacosane		4.24		79 %	Extract 70-130%	able Petroleur <i>B8J0004</i>		bons by El 10/08/08	PA Method 8015E
Sample ID: 25-E % Solids		94		1	Conven	tional Chemis B8J0057			HA/EPA Methods % calculation
Lab ID: 0809060-07		·					Soil -	Sampled	: 09/26/08 14:15
Sample ID: 22-A · TPH as Diesel	RE1	600		56	Extract mg/kg dry		n Hydrocarl 10/01/08		PA Method 8015B 8015B/SOP385
TPH as Motor Oil		ND	U	22	u	11	**	10/09/08	8015B/SOP385
Surrogate: Hexacosane	•	4.69		83 %	70-130%	"	"	"	
Sample ID: 22-A % Solids		90		1	Conven	tional Chemist B8J0057	ry Paramet 10/13/08		HA/EPA Methods % calculation
Lab ID: 0809060-08							Soil -	Sampled	: 09/26/08 14:17
Sample ID: 22-B TPH as Diesel	RE1	1,100		110	Extracta mg/kg dry	able Petroleun B8J0004	1 Hydrocarl 10/01/08		PA Method 8015B 8015B/SOP385
TPH as Motor Oil		18	J	22	11	tt	1f	10/09/08	8015B/SOP385
Surrogate: Hexacosane	•	4.31		80 %	70-130%	<i>II</i>	и	p	
Sample ID: 22-B % Solids		93		1	Convent	ional Chemist B8J0057			IA/EPA Methods % calculation
Lab ID: 0809060-09							Soil -	Sampled	09/26/08 14:45
Sample ID: 17-NW FPH as Diesel	RB1	3,900	J. 07 J	260	Extracta mg/kg dry	ible Petroleum B8J0004			A Method 8015B 8015B/SOP385
FPH as Motor Oil			J, Q7, U	58	11	*1	ग	10/09/08	8015B/SOP385
Surrogate: Hexacosane		3.22		61 %	70-130%	n	"	n	
Sample ID: 17-NW 6 Solids		95	-	1	Convent	ional Chemistr B8J0057			IA/EPA Methods % calculation
ab ID: 0809060-10							Soil -	Sampled:	09/26/08 14:40
ample ID: 19-EW PH as Diesel	RE1	5,700		540	Extracta mg/kg dry	ble Petroleum B8J0004	Hydrocarb 10/01/08		A Method 8015B 8015B/SOP385
PH as Motor Oil		ND	υ.	86	"	, 11	**	10/09/08	8015B/SOP385
urrogate: Hexacosane		3.90		72 %	70-130%	u .	"	n	
ample ID: 19-EW 6 Solids		93		. 1	Conventi %	onal Chemistr B8J0057	y Paramete 10/13/08	rs by APH 10/14/08	A/EPA Methods % calculation
ab ID: 0809060-11			<u></u>				Soil - S	Sampled:	09/26/08 14:26
ample ID: 25-ED PH as Diesel		98		5.3	Extractal mg/kg dry	ble Petroleum B8J0004			A Method 8015B 8015B/SOP385
PH as Motor Oil		ND	U	21	n	19	19 -		8015B/SOP385
urrogate: Hexacosane		4.22		78 %	70-130%	, "	n	"	
ample ID: 25-ED Solids		. 94		1	Conventie	onal Chemistr B8J0057	y Parameter 10/13/08	rs by APH 10/14/08	A/EPA Methods % calculation
0809060 FINAL 10 23	00 1455				-	1-1	2 / 2	1-0	Page 3 of

0809060 FINAL 10 23 08 1455

mil 12/3/08

Page 3 of 6

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08273C

Project Number: R08S96

75 Hawthorne Street

Reported: 10/23/08 14:55

Project: Anaconda Mine Old Raffinate Pond

Sampling

San Francisco CA, 94105

Sample Results

Analyte	Reanalysis / Extract		Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809060-12		-	•				Soil -	Sampled	: 09/25/08 09:25
Sample ID: 23-TP					Extracta	ble Petrolem	m Hydrocarl	one by RP	A Method 8015B
TPH as Diesel		3.4	C1, F1, J	5.3	mg/kg dry	B8J0004	10/01/08		8015B/SOP385
TPH as Motor Oil		ND	U	21	ù		11		8015B/SOP385
Surrogate: Hexacosane		4.18		79 %	70-130%	n	"	ıı.	
Sample ID: 23-TP					Conventi	onal Chemis	try Paramete	re by APF	IA/EPA Methods
% Solids		95	•	1	%	B8J0057	10/13/08		% calculation
Lab ID: 0809060-13							Soil -	Sampled:	09/26/08 14:20
Sample ID: 23-C IPH as Diesel	RE1	380	J, Q7 丁	11	Extracta mg/kg dry	ble Petroleur B8J0004	n Hydrocarb 10/01/08		A Method 8015B 8015B/SOP385
ГРН as Motor Oil	-	ND	Q7, U	22	11	n	ti	10/09/08	8015B/SOP385
Surrogate: Hexacosane		3.31	•	61 %	70-130%	tt.	H	H	
Sample ID: 23-C					Conventi	onal Chemist	ry Paramete	rs by APH	A/EPA Methods
% Solids		93		1	%	B8J0057	10/13/08		% calculation

mil 12/3/08

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08273C

Reported: 10/23/08 14:55

Quality Control

Analyte	Result		Qualifiers / Comments	Quantitatio Limit	n · Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0004 - 3545 ASE/PFE - TI	PH - Extractable							Prepared	: 10/01/08 A	nalyzed: 1	10/08/0
Disease (DOTOGO / DV V/O				Extracta	ble Petrole	um Hydro	carbons b	y EPA M	ethod 8015B	- Quality	Contro
Blank (B8J0004-BLK1)											
TPH as Diesel	ND		U		5 mg/kg wet	*					
TPH as Motor Oil	. ND		U	<u> </u>	20 "					•	
C		4.00		,							
Surrogate: Hexacosane		4.22				5.00		84	70-130		
LCS (B8J0004-BS1)											
TPH as Diesel	50.1				5 mg/kg wet	50.0		100	70-130		200
Surrogate: Hexacosane		4.80			"	5.00		96	70-130		
Matrix Spike (B8J0004-MS1)			Source: 080	9060-08							
TPH as Diesel	Not Reported		Q10	5	.4 mg/kg dry	54.1	1,040	NR	70-130		25
Surrogate: Hexacosane		4.07			u	5.41		75	70-130		
Matrix Spike Dup (B8J0004-MSD1)			Source: 0809	0060-08							
TPH as Diesel	Not Reported		Q10		.4 mg/kg dry	54.1	1,040	NR	70-130	0.07	25
Surrogate: Hexacosane		4.48			п	5.41		83	70-130		-
Batch B8J0057 - Solids, Dry Weight (Weight	Prep) - Solids, Dry		2	Conventio	nal Chamb	efry Paran		_	10/13/08 Ar A Methods -	-	
Blank (B8J0057-BLK1)				Contenue	mat Chellin		netera ny F	i iiri/isi	A MEHIOUS .	Quanty C	one or
% Solids	ND		U		1 %						
Duplicate (B8J0057-DUP1)	. , , , , , , , , , , , , , , , , , , ,		Source: 0809	060-06							
% Solids	94				1 %		94			0	20

12/3/08

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF
Laboratory: EPA Region 9 Laboratory	Lab Project Number: 0810012
Sampling Dates: 10/6/08	Sample Matrix: Soil
Analytical Method: TPH as Diesel & MO EPA 8015M	Data Reviewer: Mindy Song

REVIEW AND APPROVAL:

Data Reviewer:	Mindy Song	Date:	12/3/08
Technical QA Reviewer:	Howard Edwards	Date:	
Project Manager:	Howard Edwards	Date:]	
-			

SAMPLE IDENTIFICATION:

Sample No.	Sample I.D.	Laboratory I.D.
1	VAS-1006-14'-01	0810012-01
2	VAS-1006-6'-02	0810012-02
3	VAS-1006-9'-03	0810012-03
4	VAS-1006-9'-04	0810012-04
5	VAS-1006-12'-05	0810012-05
6	VAS-1006-13'-06	0810012-06
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA PACKAGE COMPLETENESS CHECKLIST:

Chaplist C	e alas
Checklist C	
	X Included: no problems
	Miciadea. problems noted in review
	O Not Included and/or Not Available
	NR_ Not Required
	RS Provided As Re-submission
Case Narra	tive:
	X Case Narrative present
Quality Cor	ntrol Summary Package:
	X Data Summary sheets
<u> </u>	X Data Summary sheets * Matrix Spike/Spike Duplicate Recoveries
	X Laboratory Control Sample Recoveries
-	X Method Blank Summaries
	X Initial Calibration Data
	X Continuing Calibration Data
	* Surrogate Compound Recovery Summary
_	NR Internal Standard Area Summary
Sample and	d Blank Data Package Section
	X Chromatograms
	X Quantitation Reports
Raw QC Da	ıta Package Section
	X Quantitation Reports for Standards, LCS, and MS/MSD
	X List of Instrument Detection Limits
	X Chain-of-Custody Records
	X Sample Preparation and Analysis Run Logs

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

DATA VALIDATION SUMMARY

The data were reviewed following procedures and limits specified in the EPA OSWER directive, *Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan and Data Validation Procedures* (EPA/540/G-90/004, OSWER Directive 9360.4-01, dated April 1990).

Indicate with a YES or NO whether each item is acceptable without qualification:

Holding Times	YES
Instrument Performance Criteria	YES
Initial Calibrations	YES
Continuing Calibrations	YES
Laboratory Control Sample	YES
Matrix Spike/Matrix Spike Duplicate	YES
Blanks and Background Samples	YES
Surrogate Compounds	NO .
Internal Standards	N/A
Duplicate Analyses	NA
Analyte Identification	YES
Analyte Quantitation	YES
Overall Assessment of Data	YES
Usability of Data	YES
	Instrument Performance Criteria Initial Calibrations Continuing Calibrations Laboratory Control Sample Matrix Spike/Matrix Spike Duplicate Blanks and Background Samples Surrogate Compounds Internal Standards Duplicate Analyses Analyte Identification Analyte Quantitation Overall Assessment of Data

Comments: Surrogate recoveries were within the control limits except sample VAS-1006-14'-01 (66%) and VAS-1006-13'-06 (67%). Detected diesel results in VAS-1006-14'-01 and VAS-1006-13'-06 were qualified as estimated (J)

N/A: Not Applicable NA: Not Analyzed

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

1. HOLDING TIMES

X	Acceptable
	Acceptable with qualification
	Unacceptable

Samples were extracted and analyzed within required holding times except as noted under Comments. In addition, no problems were identified with regard to sample preservation or custody unless specified. For those samples analyzed outside holding time requirements, the detected results have been qualified as estimated (J), and the nondetected results have been qualified either as estimated (UJ) or rejected (R) based on the reviewer's judgment.

Water Samples:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses: 7 days (from collection) to extraction; 40 days (from extraction) to analysis.

Soil or Other Matrices:

Purgeable analyses: 14 days (from collection) to analysis.

Extractable analyses:14 days (from collection) to extraction;40 days (from extraction) to analysis.

Comments: Analytical holding time was met.

2. INSTRUMENT PERFORMANCE CRITERIA

x		Raw data has been checked to verify that there is adequate resolution (>25%) between peaks of the standard compounds.
Х	Raw data has been checked to verify that retention time windows a reported and that all standard compounds are within the windows.	

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

3. INITIAL CALIBRATIONS

X	Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, a 5-point initial calibration was run. In addition, average Relative Response Factor (RRF), and percent relative Standard Deviation (%RSD) values were within control limits (%RSD <= 20). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the low calibration level was not detected, the non-detected results are qualified (UJ).

Comments: TPH as diesel and motor oil standards were used and %RSD values were within the control limit.

4. CONTINUING CALIBRATIONS:

X	_Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, continuing calibrations were performed at the beginning and at the end of any group of samples and at least every 12 hours. In addition, Relative Response Factors (RRF), and Percent Difference (%D) values were within control limits (%D <= 15). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the %D is very high and indicates a severe loss of instrument sensitivity, the associated non-detected results may be qualified as estimated (UJ) or rejected (R) based on the professional judgment of the reviewer.

Comments: Diesel and motor oil standards were analyzed and percent difference values were within the control limit.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

	5. LABORATORY CONTROL SAMPLE
X	Acceptable Acceptable with qualification Unacceptable
	No Laboratory Control Samples Analyzed
(bias) i the Sar which	Itory control sample recoveries are used for a qualitative indication of accuracy independent of matrix effects. LCS recovery limits should either be specified in impling and Analysis Plan or can be established by the laboratory. For analytes exceeded these control limits, associated detected results are qualified as ted (J).
Comm	ents: LCS recovery was within the control limit.
	6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE
X	Acceptable Acceptable with qualification
	Acceptable with qualification Unacceptable
	No Matrix Spike/Matrix Spike Duplicates Analyzed

Matrix spike and matrix spike duplicate recoveries are used for a qualitative indication of accuracy (bias) due to matrix effects. The RPD between the recoveries is used for a qualitative indication of precision. Spike recovery limits of 80% to 120% are specified in EPA/540/G-90/004. For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). At the discretion of the reviewer, other limits may be used only if justification can be provided.

Comments: Sample VAS-1006-13'-06 was used for MS/MSD analysis and the recoveries were outside of control limit. Qualification was not necessary because the amount of diesel present in the parent sample was greater than four times amount spiked.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

7. BLANKS AND BACKGROUND SAMPLES
X Acceptable Detection Limits Adjusted
The following blanks were analyzed: X Method (preparation) Blanks Field Blanks Instrument Blanks Rinsate Blanks Background Samples VOA Trip Blanks
Preparation (method) blanks were prepared for each batch of samples extracted. A preparation blank was analyzed after every continuing calibration standard, prior to sample analysis unless noted below. Any compound detected in the sample and also detected in any associated blank, must be qualified as non-detect (U) when the sample concentration is less than 5x the blank concentration.
Comments: No contamination was found in the method blank at reporting limit level.
8. SURROGATE COMPOUNDS
AcceptableX

Surrogate compound recoveries for samples analyzed within a sample group must be within the limits specified in the method. If the surrogate recovery is between 10% and the lower limit, the associated detected results are qualified as estimated (J) and the non-detected results are qualified as estimated (UJ). If the surrogate recovery is <10%, the associated detected results are qualified as estimated (J) and the non-detected results are rejected (R). If the surrogate recovery is above the upper limit, the associated detected results are qualified as estimated (J). Surrogate recoveries which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms. If there are no limits specified in the method, laboratory limits based on historical performance may be used at the discretion of the reviewer.

Comments: Surrogate recoveries were within the control limits except sample VAS-1006-14'-01 (66%) and VAS-1006-13'-06 (67%). Detected diesel results in VAS-1006-14'-01 and VAS-1006-13'-06 were qualified as estimated (J)

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

9. INTERNAL STANDARDS
Acceptable
Acceptable with qualification
Unacceptable
X No internal standards analyzed
Internal Standard area counts for samples analyzed within a sample group must be within the range of 50% to 200% of the internal standard area for the continuing calibration. If the internal standard area is between 10% and 50% of this value, the associated detected results are qualified as estimated (J) and the nondetected results are qualified as estimated (UJ). If the internal standard area is <10% of the calibration area, both the detected and nondetected results are rejected (R). If the internal standard area is >200% of the calibration area, the associated detected results are qualified as estimated (J). Internal standards which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms.
Comments:
10. DUPLICATE ANALYSES
Acceptable
Acceptable with qualification
Unacceptable
X No Duplicates Analyzed
Type of duplicates analyzed:Field DuplicatesLaboratory Duplicates
Calculate the relative Percent Difference (RPD) between the members of duplicate pairs using the equation indicated below. Qualify the results as estimated (J) for any analyte whose RPD exceeds that specified in the Sampling and Analysis Plan.
RPD = <u>2(Value 1 - Value 2)</u> x 100% Value 1 + Value 2

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

11. ANALYTE IDENTIFICATION

Verify that positive results have been confirmed on a dissimilar second column, that the sample chromatograms agree with the correct daily standard chromatograms, and that the retention time windows match.

Comments:

12. ANALYTE QUANTITATION

Confirm that analyte quantitation was performed correctly using the following formulas:

Purgeable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)

(external standard area)(volume of water purged, mL)

Purgeable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)

(external standard area)(weight of soil extracted, g)(fraction solids)

Extractable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(volume of sample extracted, mL)(Injection volume, uL)

Extractable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)(total volume of extract, uL)

(external standard area)(weight of sample extracted, g)(fraction solids)(injection volume, uL)

Comments: Sample VAS-1006-12'-05

Diesel: (5359456228/2.759E+6) (ug/mL) (100) (3mL/30g) (100/96) = 20235 ug/g= 20235 mg/kg.

Lab reported 20000 mg/kg.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

13. OVERALL ASSESSMENT OF DATA

On the basis of this review, the following determination has been made with regard to the overall data usability for the specified level.

	_Acceptable
Х	Acceptable with Qualification
	Rejected
Accept	ed data meet the minimum requirements for the following EPA data category:
	_ERS Screening
	Non-definitive with 10 % Conformation by Definitive Methodology
	Definitive, Comprehensive Statistical Error Determination was performed.
X	Definitive, Comprehensive Statistical Error Determination was not performed.

Any qualifications to individual sample analysis results are detailed in the appropriate section above or appear under the comments section below. In cases where several QC criteria are out of specification, it may be appropriate to further qualify the data usability. The data reviewer must use professional judgment and express concerns and comments on the data validity for each specific data package.

Comments: Data as reported are valid.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
TDD Number: 09-08-07-005	Project Number: 002693.2009.01RF

14. USABILITY OF DATA

A. These data are considered usable for the data use objectives stated in the <u>EPA</u>
<u>EMERGENCY RESPONSE SECTION AND SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM</u>
<u>QUALITY ASSURANCE SAMPLING PLAN FOR SOIL, WATER AND MISCELLANEOUS MATRIX SAMPLING,</u>
ANACONDA MINE POND REMOVAL SUPPORT, YERINGTON, NEVADA, SEPTEMBER 24, 2008 (QASP).

The following data use objectives were indicated in the QASP:

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVELS TO DETERMINE IF ADDITIONAL EXCAVATION IS NEEDED.

TO PROVIDE CONTAMINATE INFORMATION TO ASSIST IN THE USEPA DECISION REGARDING ON-SITE TREATMENT.

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVEL TO DETERMINE IF TREATMENT IS COMPLETED AND/OR PROGRESSING.

THE DATA ARE USABLE FOR THE ABOVE OBJECTIVES.

B. These data meet quality objectives stated in the <u>QASP</u>.

AS INDICATED IN SECTION 2.4 OF THE QASP, THE INVESTIGATION WILL GENERATE BOTH SCREENING AND DEFINITIVE DATA AND TABLE E OF THE QASP OUTLINES THE DATA QUALITY INDICATOR GOALS APPLICABLE TO THE DEFINITIVE DATA QUALITY LEVEL. THE DATA IN THIS PACKAGE MEET THESE REQUIREMENTS.

15. DOCUMENTATION OF LABORATORY CORRECTIVE ACTION

Problem: No problems requiring corrective action were found.

Resolution: Not required.

Attached are copies of all data summary sheets, with data qualifiers indicated, and a copy of the chain of custody for the samples.

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Emergency Response Section

SDG: 08282A

Project Number: R08S96

75 Hawthorne Street San Francisco CA, 94105 - Reported: 10/24/08 13:30

Project: Anaconda Mine Old Raffinate Pond

Sampling

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	u Units	Batch	Prepared	Analyze	d Method
Lab ID: 0810012-01				-			Soil -	Sampled	: 10/06/08 11:1
Sample ID: VAS-1006-14'-01				•	Extracta	able Petroleun	n Hydrocar	bons by EI	PA Method 80151
TPH as Diesel	RE2	•	J, Q7 J	530	mg/kg dry	B8J0041			8015B/SOP385
TPH as Motor Oil	RE1	ND	J, Q7, U	210	16	п	· p	10/09/08	8015B/SOP385
Surrogate: Hexacosane	REI	3.46		66 %	70-130%	, n		#	
Sample ID: VAS-1006-14'-01 % Solids		95		1	Convent %	ional Chemist B8J0043	ry Paramet 10/08/08	ers by API 10/09/08	HA/EPA Method: % calculation
Lab ID: 0810012-02							Soil -	Sampled	: 10/06/08 11:12
Sample ID: VAS-1006-6'-02		•			Extracta	ıble Petroleun	Hydrocarl	ons by EP	A Method 8015E
TPH as Diesel			C1, J	5.2	mg/kg dry	B8J0041	10/08/08	10/09/08	8015B/SOP385
TPH as Motor Oil		ИD	U .	21	11	Ð	11		.8015B/SOP385
Surrogate: Hexacosane		4.31		83 %	70-130%	"	"	H	
Sample ID: VAS-1006-6'-02									IA/EPA Methods
% Solids Lab ID: 0810012-03	-	97		1	%	B8J0043			% calculation
Sample ID: VAS-1006-9'-03									10/06/08 11:14
TPH as Diesel		. 33	CI, J	5.1	Extractal mg/kg dry	ble Petroleum B8J0041			A Method 8015B 8015B/SOP385
PH as Motor Oil		ND		20	*	11	11		8015B/SOP385
urrogate: Hexacosane		4.62		90 %	70-130%	Ħ	n	n	
ample ID: VAS-1006-9'-03 6 Solids		98		1	Conventi %	onal Chemistr B8J0043			IA/EPA Methods % calculation
ab ID: 0810012-04							Soil -	Sampled:	10/06/08 11:15
ample ID: VAS-1006-9'-04					Extractal	ble Petroleum	Hydrocarb	ons by EP	A Method 8015B
PH as Diesel	RE1	1,100		52	mg/kg dry	B8J0041			8015B/SOP385
PH as Motor Oil		ND	U	62	**	at .		10/10/08	8015B/SOP385
urrogate: Hexacosane		4.22		81 %	70-130%	"	"	"	
mple ID: VAS-1006-9'-04					Convention	onal Chemistr	y Paramete	rs by APH	A/EPA Methods
Solids		96		1	%	B8J0043			% calculation
ab ID: 0810012-05	•						Soil - S	Sampled:	10/06/08 11:17
ample ID: VAS-1006-12'-05					Extractab		Hydrocarb	ons by EPA	Method 8015B
PH as Diesel	RE2	20,000	**	520	mg/kg dry	B8J0041	10/08/08		8015B/SOP385
PH as Motor Oil	RE1	ND	U	260		. "		10/10/08	8015B/SOP385
rrogate: Hexacosane	REI	3.65		70 %	70-130%	"			
mple ID: VAS-1006-12'-05 Solids		96		1	Convention%	nal Chemistry B8J0043			A/EPA Methods % calculation
ab ID: 0810012-06						****	Soil - S	Sampled:	10/06/08 11:20
mple ID: VAS-1006-13'-06 PH as Diesel	RE2	6,000	1, Q7 J	260		le Petroleum I B8J0041			Method 8015B 8015B/SOP385
H as Motor Oil	REI		r, Q7 - J r, Q7, U	210	mg/kg dry	1000041	"		8015B/SOP385
		1112	, <', ~	٠	<u></u>		1		., 0
0810012 FINAL 10 24 08	1330			•	11	12/3/2			Page 2 of
						10/3/2	DS-		<i>0</i>

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone:(510) 412-2300 Fax:(510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond
Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08282A

Reported: 10/24/08 13:30

Sample Results

Analyte	Reanalysis / Extract	Result	Qualifiers / Comments	Quantitation Limit	1 Units	В	atch	Prepared	Analyzed	Method	
Lab ID: 0810012-06			•					Soil •	Sampled:	10/06/08	11:20
Sample ID: VAS-1006-13'-06									bons by EPA	Method	8015B
Surrogate: Hexacosane	RE1	3.46		67 %	70-130	0% B8	8,10041	10/08/08	10/09/08		
Sample ID: VAS-1006-13'-06 % Solids		97	•	1	Cor %		Chemistr 3J0043		ers by APH/ 10/09/08 9		
Quality Control											
Analyte	Result		Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8J0041 - 3545 ASE/PFE - TI	PH - Extractable							Prepared:	10/08/08 A	nalyzed: 1	10/09/(
Blank (B8J0041-BLK1)		•		Extractable	Petrole	um Hydro	carbons b	y EPA Me	thod 8015B	- Quality	Contr
TPH as Diesel	ND		Ū.	5	mg/kg						
TPH as Motor Oil	ND		υ	20	wet						
Surrogate: Hexacosane		4.03			H	5.00		81	70-130		
LCS (B8J0041-BS1)											
IPH as Diesel	49.2				mg/kg wet	50.0		98	70-130		200
Surrogate: Hexacosane		4.77			Ħ	5.00		95	70-130	,	
Matrix Spike (B8J0041-MS1)		****	Source: 0810	1012-05RE1		3.00	*		70-130		
TPH as Diesel	Not Reported		Q10	52	mg/kg dry	52.1	17,900	NR	70-130		25
Surrogate: Hexacosane		4.07						40	go 130		
Matrix Spike Dup (B8J0041-MSD1)	, , <u>, , , , , , , , , , , , , , , , , </u>	4.07	Source: 0810	0111 GEDT21	.	5.21		78	70-130		
PH as Diesel	Not Reported		Q10	52 1	ng/kg Iry	52.1	17,900	. NR	70-130	0.1	25
urrogate: Hexacosane		4.28			"	5.21		82	70-130		
eatch B8J0043 - Solids, Dry Weight (Veight	Prep) - Solids, Dry	-		Conventional	Chemis	try Paran		-	10/08/08 An	•	
lank (B8J0043-BLK1)				· · · · · · · · · · · · · · · · · · ·		,				Zunni) C	. 51111 0
Solids	ND		U	1 9	6						
uplicate (B8J0043-DUP1) Solids	98	_	Source: 0810	012-03	4		98			0	20

mid 12/3/08

PROL NO.	PROJECT NAME DIVIDION DE	≅ €	_	4	//////////////////////////////////////		
SAMPLERS ASTRONOME	(all land				12/2///	•	
LEWING COPE	SP			g S			REMARKS
DATE	AWOO	SAMPLE	SAWPLE (DENT) FICATION	TAINERS		•	
वाः॥ श्वीकाव	1.95	X VPS-LODG	-1000i-141-01	-	*************************************		
100 11:12 Soi		X VPS-1006	-1006-6'-02	1	× ×		
प्रिकृति । । । देश	Sil	X VAS- ICOLO-	- joble - 91 - 03	,-,,-	× ×		
10 io 10 in 15 Sol 1		X VIPS - IDDID	+10010-d1-01d	-	× ×		
10/1/10/8/11:17 डिग		X JAS-1000	-1000-121-05	الجن.	× ×		
into los lisas sori		X VRS-10010-15-1-010	-13-010	,,,	XX	W	
				12			
				21			
1.4						-	
	· ·						
				10. 20			
Reignizated by (Signature)	Options)	10 21 BJ L 100	Received by: (Signature)		Relinquished by: (Signanura)	Date (Time	Received by: (Signature)
Rellaquished by: (Signature)	gnature)	Detra / Time	Received by: (Signature)	:	Relinguished by: (Signatura)	Date / Time	Received by: (Signature)
Received by Laboratory by. (Sigmature)	internation of relationships	1) Jate Time	Temp. Seals Intact (MN)		Conditions / Remarks		
7	Linking Order	* * * * * * * * * * * * * * * * * * *	Charles County of Accompanies Shampert Court to Cocamington Elias			-	

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

Laboratory: EPA Region 9 Laboratory	Lab Project Number: 0809051
Sampling Dates: 9/23/08	Sample Matrix: Liquid
Analytical Method: PCBs by EPA 8082	Data Reviewer: M. Song

REVIEW AND APPROVAL:

Data Reviewer:	Mindy Song	Date: 12/3/08
Technical QA Reviewer:	Howard Edwards	Date:
Project Manager:	Howard Edwards	Date:

SAMPLE IDENTIFICATION:

Sample No.	Sample I.D.	Laboratory I.D.
1	VA-2	0809051-01
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19	•	
20		

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

DATA PACKAGE COMPLETENESS CHECKLIST:

Checklist Code:
X Included: no problems * Included: problems noted in review O Not Included and/or Not Available NR Not Required RS Provided As Re-submission
Case Narrative: X Case Narrative present
Quality Control Summary Package: X Data Summary sheets X Matrix Spike/Spike Duplicate Recoveries X Laboratory Control Sample Recoveries X Method Blank Summaries X Initial Calibration Data X Continuing Calibration Data X Surrogate Compound Recovery Summary NR DDT and Endrin Degradation Check Data NR Internal Standard Area Summary
Sample and Blank Data Package Section X Chromatograms X Quantitation Reports
Raw QC Data Package Section X Quantitation Reports for Standards, LCS, and MS/MSD X List of Instrument Detection Limits X Chain-of-Custody Records X Sample Preparation and Analysis Run Logs

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

DATA VALIDATION SUMMARY

The data were reviewed following procedures and limits specified in the EPA OSWER directive, Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan and Data Validation Procedures (EPA/540/G-90/004, OSWER Directive 9360.4-01, dated April 1990).

Indicate with a YES or NO whether each item is acceptable without qualification:

1	Holding Times	YES
2	Instrument Performance Criteria	YES
3	Initial Calibrations	YES
4	Continuing Calibrations	YES
5	Laboratory Control Sample	YES
6	Matrix Spike/Matrix Spike Duplicate	YES
7	Blanks and Background Samples	YES
8	Surrogate Compounds	YES
9	Internal Standards	N/A
10	Duplicate Analyses	YES
11	Analyte Identification	YES
12	Analyte Quantitation	YES
13	Overall Assessment of Data	YES
14	Usability of Data	YES

Comments: N/A: Not Applicable

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

1. HOLDING TIMES

X	_Acceptable	
	Acceptable wi	ith qualification
	Unacceptable	

Samples were extracted and analyzed within required holding times except as noted under Comments. In addition, no problems were identified with regard to sample preservation or custody unless specified. For those samples analyzed outside holding time requirements, the detected results have been qualified as estimated (J), and the nondetected results have been qualified either as estimated (UJ) or rejected (R) based on the reviewer=s judgement.

Water Samples Extractable analyses: 7 days	from polloption) to a	vtraction: An d	ave (from extraction) to
 **Contract to the contract of the	Hom conection, to e	Allaction, 40 u	ays (from extraction) to
analysis,			
Soil or Other Matrices:			
Extractable analyses: 14 days	(from collection) to	extraction; 40	days (from extraction) to
analysis.	The state of the s	그 민준 어떤 병원들은 사람들이다.	아이아 어린 어릴 때 아이지 않는다.

Comments: Analytical holding time was met.

2. INSTRUMENT PERFORMANCE CRITERIA

N/A	Raw data has been checked to verify that the DDT retention time is greater than
	12 minutes and that there is adequate resolution (>25%) between peaks of the other standard compounds.
Χ	Raw data has been checked to verify that retention time windows are reported
	and that all standard compounds are within the windows.
N/A	Raw data has been checked to verify that the percent breakdown for DDT and
	endrin does not exceed 20% in the degradation check standard.
Χ	Raw data has been checked to verify that the percent difference in retention time
	for the surrogate in all standards and samples does not exceed 0.3% (capillary columns) or 1.5% (wide-bore capillary columns).

Comments:

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

3	INITIAL	CAL	IRR	ATIC	2NC
	INTIME			~ ' ' '	714 U

X	_Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, a 5-point initial calibration was run. In addition, average Relative Response Factor (RRF), and percent relative Standard Deviation (%RSD) values were within control limits (%RSD <= 20). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the low calibration level was not detected, the nondetected results are qualified (UJ).

Comments: PCB 1016/1260 was used for an initial calibration and percent relative standard deviation values were within the control limits.

4. CONTINUING CALIBRATIONS

X	_Acceptable
	Acceptable with qualification
	Unacceptable

Unless flagged below, continuing calibrations were performed at the beginning and at the end of any group of samples and at least every 12 hours. In addition, Relative Response Factors (RRF), and Percent Difference (%D) values were within control limits (%D <= 15). For analytes which exceeded these control limits, associated detected results are qualified as estimated (J). In cases where the %D is very high and indicates a severe loss of instrument sensitivity, the associated nondetected results may be qualified as estimated (UJ) or rejected (R) based on the professional judgement of the reviewer.

Comments: Percent Difference (%D) values were within control limits.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693,2009.01RF	TDD No: 09-08-07-0005

5. LABORATORY CONTROL SAMPLE	
X Acceptable Acceptable with qualification Unacceptable No Laboratory Control Samples Analyzed	
Laboratory control sample recoveries are used for a qualitative indication of accuracy (bias) independent of matrix effects. LCS recovery limits should either be specified in Sampling and Analysis Plan or can be established by the laboratory. For analytes whice exceeded these control limits, associated detected results are qualified as estimated (ch
Comments: All recoveries were within control limits.	
6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE	
X Acceptable Acceptable with qualification Unacceptable No Matrix Spike/Matrix Spike Duplicates Analyzed	
Matrix spike and matrix spike duplicate recoveries are used for a qualitative indication accuracy (bias) due to matrix effects. The RPD between the recoveries is used for a qualitative indication of precision. Spike recovery limits of 80% to 120% are specified EPA/540/G-90/004. For analytes which exceeded these control limits, associated detection are qualified as estimated (J). At the discretion of the reviewer, other limits may be used only if justification can be provided.	in :ted

Comments: Sample VA-2 was used for MS and MSD. Recoveries of PCB 1016 and 1260 in MS and MSD were within the control limits.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

7. BLANKS AND BACKGROUND SAMPLES
X Acceptable Detection Limits Adjusted
The following blanks were analyzed: X Method (preparation) Blanks Field Blanks Instrument Blanks Rinsate Blanks Background Samples VOA Trip Blanks
Preparation (method) blanks were prepared for each batch of samples extracted. A preparation blank was analyzed after every continuing calibration standard, prior to sample analysis unless noted below. Any compound detected in the sample and also detected in any associated blank, must be qualified as non-detect (U) when the sample concentration is less than 5x the blank concentration.
Comments: Method blank was free of contamination at the reporting limit level.
8. SURROGATE COMPOUNDS
X Acceptable Acceptable with qualification Unacceptable No surrogates analyzed

Surrogate compound recoveries for samples analyzed within a sample group must be within the limits specified in the method. If the surrogate recovery is between 10% and the lower limit, the associated detected results are qualified as estimated (J) and the nondetected results are qualified as estimated (UJ). If the surrogate recovery is <10%, the associated detected results are qualified as estimated (J) and the nondetected results are rejected (R). If the surrogate recovery is above the upper limit, the associated detected results are qualified as estimated (J). Surrogate recoveries which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms. If there are no limits specified in the method, laboratory limits based on historical performance may be used at the discretion of the reviewer.

Comments: All surrogate recoveries were within control limits.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

9. INTERNAL STANDARDS

	_ Acceptable
	Acceptable with qualification
	Unacceptable
X	No internal standards analyzed

Internal Standard area counts for samples analyzed within a sample group must be within the range of 50% to 200% of the internal standard area for the continuing calibration. If the internal standard area is between 10% and 50% of this value, the associated detected results are qualified as estimated (J) and the non-detected results are qualified as estimated (UJ). If the internal standard area is <10% of the calibration area, both the detected and non-detected results are rejected (R). If the internal standard area is >200% of the calibration area, the associated detected results are qualified as estimated (J). Internal standards which exceeded these limits are noted below and the associated results are qualified on the attached sample report forms.

Comments: External standards were used.

10. DUPLICATE ANALYSES

X	Acceptable
	Acceptable with qualification
	Unacceptable
	No Duplicates Analyzed
Type of	duplicates analyzed:
	Field Duplicates
Х	Laboratory Duplicates

Calculate the relative Percent Difference (RPD) between the members of duplicate pairs using the equation indicated below. Qualify the results as estimated (J) for any analyte whose RPD exceeds that specified in the Sampling and Analysis Plan.

RPD = <u>·2(Value 1 - Value 2)</u> x 100% Value 1 + Value 2

Comments: RPDs of MS & MSD were less than 35%.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

11. ANALYTE IDENTIFICATION

Verify that positive results have been confirmed on a dissimilar second column, that the sample chromatograms agree with the correct daily standard chromatograms, and that the retention time windows match. When sample results are confirmed by a second column, the relative percent difference (RPD) between the two results is calculated. If the RPD is less than 40% and there is no evidence of chromatographic problems, the higher result is reported. If the RPD is greater than 40%, the chromatogram is checked for anomalies and results are selected based on the best professional judgment of the reviewer. If there is no evidence of any chromatographic problems, the higher result is reported.

Comments: Not applicable.

12. ANALYTE QUANTITATION

Confirm that analyte quantitation was performed correctly using the following formulas:

Extractable analyses, water samples:

ug/L = (analyte area)(amount of external standard, ng)(total volume of extract, uL)
(external standard area)(volume of sample extracted, mL)(injection volume, uL)

Extractable analyses, soil samples:

ug/kg = (analyte area)(amount of external standard, ng)(total volume of extract, uL)
(external standard area)(weight of sample extracted, g)(fraction solids)(injection volume, uL)

Comments: No PCBs were detected in the samples.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada				
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005				

13. OVERALL ASSESSMENT OF DATA

On the basis of this review, the following determination has been made with regard to the overall data usability for the specified level.

X	Acceptable
	Acceptable with Qualification
	Rejected
Accepte	d data meet the minimum requirements for the following EPA data category:
	ERS Screening
	Non-definitive with 10 % Conformation by Definitive Methodology
	Definitive, Comprehensive Statistical Error Determination was performed.
<u> </u>	Definitive, Comprehensive Statistical Error Determination was not performed.

Any qualifications to individual sample analysis results are detailed in the appropriate section above or appear under the comments section below. In cases where several QC criteria are out of specification, it may be appropriate to further qualify the data usability. The data reviewer must use professional judgment and express concerns and comments on the data validity for each specific data package.

Comments: Data as reported are valid.

Tier 2 Validation

Site Name: Anaconda Mine Pond Removal	Location: Yerington, Nevada
Project Number: 002693.2009.01RF	TDD No: 09-08-07-0005

14. USABILITY OF DATA

A. These data are considered usable for the data use objectives stated in the <u>EPA</u>
<u>EMERGENCY RESPONSE SECTION AND SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM</u>
<u>QUALITY ASSURANCE SAMPLING PLAN FOR SOIL, WATER AND MISCELLANEOUS MATRIX SAMPLING,</u>
ANACONDA MINE POND REMOVAL SUPPORT, YERINGTON, NEVADA, SEPTEMBER 24, 2008 (QASP).

The following data use objectives were indicated in the QASP:

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVELS TO DETERMINE IF ADDITIONAL EXCAVATION IS NEEDED.

TO PROVIDE CONTAMINATE INFORMATION TO ASSIST IN THE USEPA DECISION REGARDING ON-SITE TREATMENT.

TO BE COMPARED WITH SITE-SPECIFIC ACTION LEVEL TO DETERMINE IF TREATMENT IS COMPLETED AND/OR PROGRESSING.

THE DATA ARE USABLE FOR THE ABOVE OBJECTIVES.

B. These data meet quality objectives stated in the QASP.

AS INDICATED IN SECTION 2.4 OF THE QASP, THE INVESTIGATION WILL GENERATE BOTH SCREENING AND DEFINITIVE DATA AND TABLE E OF THE QASP OUTLINES THE DATA QUALITY INDICATOR GOALS APPLICABLE TO THE DEFINITIVE DATA QUALITY LEVEL. THE DATA IN THIS PACKAGE MEET THESE REQUIREMENTS.

15. DOCUMENTATION OF LABORATORY CORRECTIVE ACTION

Problem: No problems requiring corrective action were found.

Resolution: Not required.

Attached are copies of all data summary sheets, with data (a qualifiers indicated, and a copy of the chain of custody for the samples.

1337 S. 46th Street, Building 201, Richmond, CA 94804 Fax:(510) 412-2302 Phone:(510) 412-2300

Project Manager: Thomas Dunkelman

Emergency Response Section Project Number: R08S96

75 Hawthorne Street

Project: Anaconda Mine Old Raffinate Pond

San Francisco CA, 94105

SDG: 08269G

Reported: 10/23/08 14:11

Sampling

Sample Results

Analyte	Reanalysis / Extract		Qualifiers / Comments	Quantitation Limit	Units	Batch	Prepared	Analyze	d Method
Lab ID: 0809051-01							NAPL -	Sampled	: 09/23/08 10:30
Sample ID: VA-2 Aroclor 1016		ND	U	1,400	ug/kg	Polychlo B8I0158	rinated Biph 09/29/08		PA Method 8082 8082/SOP335
Aroclor 1221		ND	υ	2,900	n	Ħ	95	п	8082/SOP335
Aroclor 1232		ND	U	1,400	n	п	H	*	8082/SOP335
Aroclor 1242		ND	U	1,400	n	n	tt	π	8082/SOP335
Arocior 1248		ND	U	1,400	n	. #	11	n	8082/SOP335
Aroclor 1254	•	ND	υ	1,400	**	n	n	1)	8082/SOP335
Aroclor 1260		ND	U	1,400	н	11	Tt.	n	8082/SOP335
Aroclor 1262		ND	U	1,400	Ħ	. H	н	Ħ	8082/SOP335
Surrogate: Tetrachloro-m-xylene	RE1	1,150		80 %	65-135%	n	"	10/10/08	
Surrogate: Decachlorobiphenyl	RE1	1,170		82 %	80-130%	"	#	Ħ	

1337 S. 46th Street, Building 201, Richmond, CA 94804 Phone: (510) 412-2300 Fax: (510) 412-2302

Project Manager: Thomas Dunkelman

Project Number: R08S96

Project: Anaconda Mine Old Raffinate Pond

Sampling

Emergency Response Section

75 Hawthorne Street San Francisco CA, 94105 SDG: 08269G

Reported: 10/23/08 14:11

Quality Control

Analyte	Result	Qualifiers / Comments	Quantitation Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B8I0158 - 3580A Waste Dilution	- PCBs						•	: 09/29/08	•	
Blank (B8I0158-BLK1)				Polyc	hlorinated	Biphenyls	by EPA ?	Method 8082	! - Quality	Contro
Aroclor 1016	ND	U	200	ug/kg						
Aroclor 1221	ND	U	400							
Aroclor 1232	ND	U	200	n						
Aroclor 1242	ND	U	200	п						
Arocior 1248	ND	ŭ	200	п						
Aroclor 1254	ND	U	200	12			•			
Arocior 1260	ND	U ·	200	tt						
Aroclor 1262	ND	U	200	**						
Surrogate: Tetrachloro-m-xylene		222 .		и,	200		111	65-135		
Surrogate: Decachlorobiphenyl		179		#	200		89	80-130		
LCS (B8I0158-BS1)										—
Aroclor-1016	659		200	ug/kg	500		132	65-135		200
Aroclor-1260	590	···	200	#	500		118	65-135		200
Surrogate: Tetrachloro-m-xylene	;	238		B	200		119	65-135		
Surrogate: Decachlorobiphenyl	ı	165		"	200		83	80-130		
Matrix Spike (B8I0158-MS1)		Source: 0809	051-01							
Aroclor 1016	3,580		1,800	ug/kg	4550	ND	79	65-135		20
Aroclor-1260	4,410		1,800		4550	ND	97.	65-135		20
urrogate: Tetrachloro-m-xylene	12	270	•	н	1820		70	65-135	•	
urrogate: Decachlorobiphenyl	12	40		"	1820		68	80-130		
fatrix Spike Dup (B810158-MSD1)		Source: 0809	051-01							
roctor-1016	3,880		1,700 ι	ıg/kg	4170	ND	93	65-135	15	20
roclor-1260	4,230		1,700	n .	4170	ND	101	65-135	4	20
urrogate: Tetrachloro-m-xylene	11	60		"	1670		70	65-135		÷
urrogate: Decachlorobiphenyl	13	00		"	1670		78	80-130		

mil 12/3/28

ENTAL PROTECTION AGENCY CHAIN OF CUSTODY RECORD													1337 S. 46th Si Richmond, CA			
o, projectivave Abaconda Ponds						NO. OF CON- TAINERS							REMARKS			
IME MATRIX	9.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	GRAB	SAN	PLE IDENTIFIC	жтюй.			/8	13	7		1	1			
130 Wood		X	ء نه ۱۸			70. U	1	×	χ'n	5						
						<u> </u>	1		\perp	1						
		-	· · · · ·	* -		<u> </u>			\perp		1.					<u> </u>
+			.,,		.•				- -	- -	+-	-			-	<u> </u>
				***	<u> </u>	,	<u></u> ::		+		1777	-				* "
	1				-			1 1	\top	1		-				43.2
					<u> </u>					1				·		
		16		•						_				<u>.</u>		
	\perp			:	** *					1						
1-1	+	1 2 1	A)				·		-	-			- <u>5 </u>	· <u>* · · · · · · · · · · · · · · · · · ·</u>		
		1	<u>, en es es en e</u>	<u> </u>				- 1	•	-	-			. :	 -	
1	1	1	, ,	- 4				-	+	 						
tinature) Data (Time Received by: (Signature)						Retinguished by: (Signebre) Date								Received by: (Sign		
Supraire) Date Time Received by: (Signature)					Retinquished by: (Signature) Date /							/Time	Received by: (Sign			
					BOT	Conditions / Remarks										
istribution: O	fginal A	ооопран <mark>а</mark>	s Shipment;	Copy to Coords	nator Field F	Ges			-		- A	· ·			- 1	9-